《动手学深度学习》笔记2.2——神经网络从基础→进阶 (参数管理-每层的权重/偏置)

目录

0. 前言

正文:参数管理

1. 参数访问

1.1 [目标参数]

1.2 [一次性访问所有参数]

1.3 [从嵌套块收集参数]

2. 参数初始化

2.1 [内置初始化]

2.2 [自定义初始化]

2.3 [参数绑定-共享参数]

3. 小结(第2节)

4. 延后初始化 (原书第5章第3节)

4.1 实例化网络

4.2 小结(第3节)


0. 前言

  • 课程全部代码(pytorch版)已上传到附件
  • 本章为原书第5章,共分为5节,本篇是第2-3节:参数管理(每层的权重/偏置)
    • 第1节:《动手学深度学习》笔记2.1——神经网络从基础→进阶 (层和块 - 自定义块)-CSDN博客
    • 第4节:《动手学深度学习》笔记2.3——神经网络从基础→进阶 (自定义层)-CSDN博客
  • 本节的代码位置:chapter_deep-learning-computation/parameters.ipynb
  • 本节的视频链接:
    • 参数管理_哔哩哔哩_bilibili

正文:参数管理

在选择了架构并设置了超参数后,我们就进入了训练阶段。 此时,我们的目标是找到使损失函数最小化的模型参数值。 经过训练后,我们将需要使用这些参数来做出未来的预测。 此外,有时我们希望提取参数,以便在其他环境中复用它们, 将模型保存下来,以便它可以在其他软件中执行, 或者为了获得科学的理解而进行检查。

之前的介绍中,我们只依靠深度学习框架来完成训练的工作, 而忽略了操作参数的具体细节。 本节,我们将介绍以下内容:

  • 访问参数,用于调试、诊断和可视化;
  • 参数初始化;
  • 在不同模型组件间共享参数。

(我们首先看一下具有单隐藏层的多层感知机。)

In [1]:

import torch
from torch import nn
​
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))  # 传入的三个:net[0],net[1],net[2]
X = torch.rand(size=(2, 4))  # 生成随机size=(2, 4)的输入,2指的是batch size
net(X)

Out[1]:

tensor([[-0.0606],[-0.1188]], grad_fn=<AddmmBackward0>)

1. 参数访问

我们从已有模型中访问参数。 当通过Sequential类定义模型时, 我们可以通过索引来访问模型的任意层。 这就像模型是一个列表一样,每层的参数都在其属性中。 如下所示,我们可以检查第二个全连接层的参数。

In [2]:

print(net[2].state_dict())  # state_dict()拿出net中第3层的参数,有weight和bias(偏置)两个参数
Out[2]:
OrderedDict([('weight', tensor([[-0.1403,  0.0922, -0.1609, -0.1838,  0.3141,  0.0916, -0.1625, -0.0127]])), ('bias', tensor([-0.1967]))])

输出的结果告诉我们一些重要的事情: 首先,这个全连接层包含两个参数,分别是该层的权重和偏置。 两者都存储为单精度浮点数(float32)。 注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

1.1 [目标参数]

注意,每个参数都表示为参数类的一个实例。 要对参数执行任何操作,首先我们需要访问底层的数值。 有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。 下面的代码从第二个全连接层(即第三个神经网络层)提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值。

In [3]:

print(type(net[2].bias)) # Parameter指的是可以优化的参数,这是一个type
print(net[2].bias)  # 输出:Parameter containing: tensor([0.1474], requires_grad=True)
print(net[2].bias.data)  # .data访问值本身,.grad来访问梯度
Out[3]:
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([-0.1967], requires_grad=True)
tensor([-0.1967])

参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。 除了值之外,我们还可以访问每个参数的梯度。 在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。

In [4]:

net[2].weight.grad == None  # .data访问值本身,.grad来访问梯度,咱这里还没做反向计算,还没有梯度
# 对损失函数求导,用反向传播(链式法则),最后使用优化算法(如SGD、Adam等)一次性更新网络的参数

Out[4]:

True

1.2 [一次性访问所有参数]

当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数。 下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。

In [5]:

print(*[(name, param.shape) for name, param in net[0].named_parameters()])  # 拿出第0个net的每个参数形状
print(*[(name, param.shape) for name, param in net.named_parameters()])  # net[1]是nn.ReLU(),不显示
# 这里的'weight', torch.Size([8, 4])和前面的nn.Linear(4, 8)相反,在前向传播时pytorch会自动给weight做转置
Out [5]:
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

拓展:关于这个转置的问题,本人尝试询问CSDN代码大模型:C知道,回答得很不错(下方有截图)

c9530a76b605467bb3cc67adbcb638d4.png

之所以将权重矩阵设计为 (out_channels, in_channels) ,把out_channels(实际是列)放前面,是为了方便拿列来进行矩阵乘法运算,符合计算机内存布局的优化,从而提高计算效率

这为我们提供了另一种访问网络参数的方式,如下所示。

In [6]:

net.state_dict()['2.bias'].data # net[2]的bias的值

Out[6]:

tensor([-0.1967])

1.3 [从嵌套块收集参数]

让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。 我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

In [7]:

def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())  # 4个 block1 拼到了一起return net
​
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

Out[7]:

tensor([[0.4036],[0.4036]], grad_fn=<AddmmBackward0>)

[设计了网络后,我们看看它是如何工作的。]

In [8]:

print(rgnet)
Out[8]:
Sequential((0): Sequential((block 0): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 1): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 2): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 3): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU()))(1): Linear(in_features=4, out_features=1, bias=True)
)

因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

In [9]:

rgnet[0][1][0].bias.data

Out[9]:

tensor([-0.3955,  0.2888, -0.2878, -0.1033, -0.1986, -0.3564,  0.1886,  0.1515])

2. 参数初始化

知道了如何访问参数后,现在我们看看如何正确地初始化参数。 我们在 :numref:sec_numerical_stability中讨论了良好初始化的必要性。 深度学习框架提供默认随机初始化, 也允许我们创建自定义初始化方法, 满足我们通过其他规则实现初始化权重。

默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵, 这个范围是根据输入和输出维度计算出的。 PyTorch的nn.init模块提供了多种预置初始化方法。

2.1 [内置初始化]

让我们首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。

In [10]:

def init_normal(m): # m指每次传入一个Module块,按照正态分布初始化参数if type(m) == nn.Linear:  # 只对全连接层初始化,别的(比如relu)咱就不管啦nn.init.normal_(m.weight, mean=0, std=0.01)  # 权重参数初始化为均值为0,方差为0.01nn.init.zeros_(m.bias)  # 将偏置参数设置为0;末尾的“_”指函数执行后会替换bias,没有返回值net.apply(init_normal)  # apply()相当于“for loop”循环,对net里面所有Module都执行init_normal,遍历一遍
net[0].weight.data[0], net[0].bias.data[0]

Out[10]:

(tensor([ 0.0216, -0.0067,  0.0025,  0.0014]), tensor(0.))

我们还可以将所有参数初始化为给定的常数,比如初始化为1。

In [11]:

def init_constant(m): # 初始化为恒定的constant(常数),算法层面咱不能初始化为常数,这里只是展示一种可能性if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)  # 把权重矩阵每一个元素初始化为1,实际上会导致梯度消失/爆炸等问题nn.init.zeros_(m.bias)  # 这里只是展示一种拓展性net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

Out[11]:

(tensor([1., 1., 1., 1.]), tensor(0.))

我们还可以[对某些块应用不同的初始化方法]。 例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。

In [12]:

def init_xavier(m): # xavier初始化,在数值稳定性那里讲过if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)
def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)  # 42这个梗出自《银河系漫游指南》,42是宇宙的答案~
​
net[0].apply(init_xavier)  # 对不同的块,应用不同的初始化函数
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([-0.5535, -0.0212, -0.4946,  0.4913])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])

2.2 [自定义初始化]

有时,深度学习框架没有提供我们需要的初始化方法。 在下面的例子中,我们使用以下的分布为任意权重参数𝑤𝑤定义初始化方法:

fe7b8f957a4b4099b9170b72d60c4296.png

同样,我们实现了一个my_init函数来应用到net

In [13]:

def my_init(m): # 更罕见的初始化,展示一下自定义初始化,作为拓展,实际用不上if type(m) == nn.Linear:print("Init", *[(name, param.shape)  # print一些debug信息for name, param in m.named_parameters()][0])nn.init.uniform_(m.weight, -10, 10)m.weight.data *= m.weight.data.abs() >= 5
​
net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])
Out[13]:
tensor([[ 0.0000, -8.9999,  9.9201, -9.2975],[-0.0000,  0.0000,  5.7322, -0.0000]], grad_fn=<SliceBackward0>)

注意,我们始终可以直接设置参数。

In [14]:

net[0].weight.data[:] += 1 # 更简单直接的方法,一个一个索引拿出来做替换
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
Out[14]:
tensor([42.0000, -7.9999, 10.9201, -8.2975])

2.3 [参数绑定-共享参数]

(简单应用一下之前所学,后面会用到参数绑定)有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

In [15]:

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),shared, nn.ReLU(),  # 参数绑定的层,参数形状、大小完全一致shared, nn.ReLU(),  # 参数绑定,两个共享层的梯度不是一样的,但它们会累加到同一组参数上nn.Linear(8, 1))  # 在反向传播完成后,使用优化算法(如SGD、Adam等)一次性更新网络的参数
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100  # 修改了其中一个权重
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])  # 另一个也同时修改了,因为指向同一个对象(实例)shared
Out[15]:
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。 这里有一个问题:当参数绑定时,梯度会发生什么情况? 答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层 (即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。

3. 小结(第2节)

  • 我们有几种方法可以访问、初始化和绑定模型参数。
  • 我们可以使用自定义初始化方法。

4. 延后初始化 (原书第5章第3节)

到目前为止,我们忽略了建立网络时需要做的以下这些事情:

  • 我们定义了网络架构,但没有指定输入维度。
  • 我们添加层时没有指定前一层的输出维度。
  • 我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。

有些读者可能会对我们的代码能运行感到惊讶。 毕竟,深度学习框架无法判断网络的输入维度是什么。 这里的诀窍是框架的延后初始化(defers initialization), 即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。

在以后,当使用卷积神经网络时, 由于输入维度(即图像的分辨率)将影响每个后续层的维数, 有了该技术将更加方便。 现在我们在编写代码时无须知道维度是什么就可以设置参数, 这种能力可以大大简化定义和修改模型的任务。 接下来,我们将更深入地研究初始化机制。

4.1 实例化网络

首先,让我们实例化一个多层感知机。

此时,因为输入维数是未知的,所以网络不可能知道输入层权重的维数。 因此,框架尚未初始化任何参数,我们通过尝试访问以下参数进行确认。

接下来让我们将数据通过网络,最终使框架初始化参数。

一旦我们知道若输入维数是20,框架可以通过代入值20来识别第一层权重矩阵的形状。 识别出第一层的形状后,框架处理第二层,依此类推,直到所有形状都已知为止。 注意,在这种情况下,只有第一层需要延迟初始化,但是框架仍是按顺序初始化的。 等到知道了所有的参数形状,框架就可以初始化参数。

4.2 小结(第3节)

  • 延后初始化使框架能够自动推断参数形状,使修改模型架构变得容易,避免了一些常见的错误。
  • 我们可以通过模型传递数据,使框架最终初始化参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/437752.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt6.7开发安卓程序间接连接到MySQL的方法

本文主要描述一种通过间接的方法&#xff0c;使得Qt开发的安卓程序可以直连到Mysql数据库的方法。本文章的方案是通过JAVA代码去连接MySQL数据库&#xff0c;然后C代码去调用JAVA的方法&#xff0c;从而实现QT开发的安卓程序去直连到MySQL数据库。 本文使用 JDBC 结合 JNI&…

《深度学习》OpenCV 图像拼接 拼接原理、参数解析、案例实现

目录 一、图像拼接 1、直接看案例 图1与图2展示&#xff1a; 合并完结果&#xff1a; 2、什么是图像拼接 3、图像拼接步骤 1&#xff09;加载图像 2&#xff09;特征点检测与描述 3&#xff09;特征点匹配 4&#xff09;图像配准 5&#xff09;图像变换和拼接 6&am…

【深度学习】05-Rnn循环神经网络-01- 自然语言处理概述/词嵌入层/循环网络/文本生成案例精讲

循环神经网络&#xff08;RNN&#xff09;主要用于自然语言处理的。 循环神经网络&#xff08;RNN&#xff09;、卷积神经网络&#xff08;CNN&#xff09;和全连接神经网络&#xff08;FCN&#xff09;是三种常见的神经网络类型&#xff0c;各自擅长处理不同类型的数据。下面…

【数据库差异研究】update与delete使用表别名的研究

目录 ⚛️总结 ☪️1 Update ♋1.1 测试用例UPDATE users as a SET a.age 111 WHERE a.name Alice; ♏1.2 测试用例UPDATE users as a SET a.age 111 WHERE name Alice; ♐1.3 测试用例UPDATE users as a SET age 111 WHERE a.name Alice; ♑1.4 测试用例UPDATE us…

ubuntu 安装k8s

#关闭 Swap 内存&#xff0c;配置完成建议重启一下 nano /etc/fstab #注释下面相似的一行 #/swapfile none swap sw 0 0 #重启 reboot#部属k8s apt update && apt install -y apt-transport-https 下载 gpg 密钥 curl https://mi…

Python安装流程(Windows + MAC)

目录 Windows 版 1.下载Python 2.开始安装 3.配置环境变量 4.测试python是否成功安装 MAC版 1.下载Python 2.开始安装 Windows 版 1.下载Python 进入Python官网下载&#xff1a;&#xff08;Python更新频繁&#xff0c;下载最新版即可&#xff0c;安装流程一致&#x…

【Bug】STM32F1的PB3和PB4无法正常输出

Bug 使用标准库配置STM32F103C8T6的PB3和PB4引脚输出控制LED灯时&#xff0c;发现引脚电平没有变化无法正常输出高低电平&#xff0c;配置代码如下&#xff1a; GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE ); GPIO_InitStruc…

C语言+单片机

今天内容有点水哈哈&#xff08;忙着练焊铁技术了嘻嘻&#xff09; C语言 简单学习了while语言以及其与for语言的区别和适用方法 .循环结构&#xff1a; 初始化语句条件判断句条件控制句 for语句 for(int1;i<100;i){执行条件} for (int i 1; i < 100; i) {printf(&quo…

stm32四足机器人(标准库)

项目技术要求 PWM波形的学习 参考文章stm32 TIM输出比较(PWM驱动LED呼吸灯&&PWM驱动舵机&&PWM驱动直流电机)_ttl pwm 驱动激光头区别-CSDN博客 舵机的学习 参考文章 stm32 TIM输出比较(PWM驱动LED呼吸灯&&PWM驱动舵机&&PWM驱动直流电机)…

发布:ultralytics-yolo-webui :Detect 目标检测 工具-先行版本 >> DataBall

通过webui 方式对ultralytics 的 detect 检测任务 进行&#xff1a; 1&#xff09;数据预处理&#xff0c;2&#xff09;模型训练&#xff0c;3&#xff09;模型推理。 本项目提供了 示例数据集&#xff0c;用 labelImage标注&#xff0c;标注文件为 xml 文件。 项目地址&…

css的背景background属性

CSS的background属性是一个简写属性&#xff0c;它允许你同时设置元素的多个背景相关的子属性。使用这个属性可以简化代码&#xff0c;使其更加清晰和易于维护。background属性可以设置不同的子属性。 background子属性 定义背景颜色 使用background-color属性 格式&#x…

【AI绘画】Midjourney进阶:景别详解

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AI绘画 | Midjourney 文章目录 &#x1f4af;前言&#x1f4af;为什么要学习景别景别的作用景别在Midjourney中的应用实例 &#x1f4af;大景别&#x1f4af;远景特点提示词书写技巧测试 &#x1f4af;全景特点提示词书写技巧测试…

三、数据链路层(下)

目录 3.6以太网 以太网的分类 Mac地址 以太网数据格式 3.7互联网 数据是如何传输的&#xff1f; 3.8以太网、局域网、互联网的区别 总结&#xff1a; 3.9 vlan基本概念与基本原理 Vlan实现 划分 VLAN 例题 3.10广域网及相关协议 ppp协议 PPP协议所满足的要求 P…

防sql注入的网站登录系统设计与实现

课程名称 网络安全 大作业名称 防sql注入的网站登录系统设计与实现 姓名 学号 班级 大 作 业 要 求 结合mysql数据库设计一个web登录页面密码需密文存放&#xff08;可以采用hash方式&#xff0c;建议用sha1或md5加盐&#xff09;采用服务器端的验证码&#…

C(十)for循环 --- 黑神话情景

前言&#xff1a; "踏过三界宝刹&#xff0c;阅过四洲繁华。笑过五蕴痴缠&#xff0c;舍过六根牵挂。怕什么欲念不休&#xff0c;怕什么浪迹天涯。步履不停&#xff0c;便是得救之法。" 国际惯例&#xff0c;开篇先喝碗鸡汤。 今天&#xff0c;杰哥写的 for 循环相…

笔记整理—linux进程部分(6)进程间通信、alarm和pause

两个进程间通信可能是任何两个进程间的通信&#xff08;IPC&#xff09;。同一个进程是在同一块地址空间中的&#xff0c;在不同的函数与文件以变量进程传递&#xff0c;也可通过形参传递。2个不同进程处于不同的地址空间&#xff0c;要互相通信有难度&#xff08;内存隔离的原…

【H2O2|全栈】关于CSS(9)CSS3扩充了哪些新鲜的东西?(二)

目录 CSS3入门 前言 准备工作 伪元素补充 :before :after 文本溢出属性 转换效果 预告和回顾 后话 CSS3入门 前言 本系列博客主要介绍CSS相关的知识点。 这一期主要介绍以下几个CSS3的知识点&#xff1a; 伪元素补充文本溢出属性转换 没有基础的朋友&#xff…

怎样过好国庆节

今天是2024年10月1号&#xff0c;国庆节&#xff0c;七天小长假&#xff0c;估计每个人都有自己的小计划。有想出去浪的&#xff0c;有想闭关修炼的&#xff0c;有想约会恋爱的&#xff0c;也有想回家看父母的&#xff0c;只要有事干&#xff0c;有想法&#xff0c;有行动&…

ArcGIS共享数据的最佳方法(不丢可视化、标注等各类显示信息一样带)

今天我们介绍一下ArcGIS数据共享的几个小妙招 我们时常要把数据发给对方&#xff0c;特别是很多新手朋友要将shp发给对方时只是发送了shp后缀的文件&#xff0c;却把shp的必要组成文件dbf、shx等等给落下了。 还有很多朋友给图层做好了符号化标注&#xff0c;但是数据一发给别…

源2.0全面适配百度PaddleNLP,大模型开发开箱即用

近日&#xff0c;源2.0开源大模型与百度PaddleNLP完成全面适配。用户通过PaddleNLP&#xff0c;可快速调用源2.0预训练大模型&#xff0c;使用源2.0在语义、数学、推理、代码、知识等方面的推理能力&#xff0c;也可以使用特定领域的数据集对源2.0 进行微调&#xff0c;训练出适…