正态分布的极大似然估计一个示例,详细展开的方程求解步骤

此示例是 什么是极大似然估计 中的一个例子,本文的目的是给出更加详细的方程求解步骤,便于数学基础不好的同学理解。

目标

假设我们有一组样本数据 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn,它们来自一个正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),我们的目标是通过极大似然估计(MLE)来找到正态分布的两个参数 μ \mu μ σ 2 \sigma^2 σ2

对数似然函数

正态分布的概率密度函数为:
f ( x i ∣ μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) f(x_i | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x_i - \mu)^2}{2\sigma^2} \right) f(xiμ,σ2)=2πσ2 1exp(2σ2(xiμ)2)

给定样本 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn,样本的似然函数为:
L ( μ , σ 2 ) = ∏ i = 1 n 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x_i - \mu)^2}{2\sigma^2} \right) L(μ,σ2)=i=1n2πσ2 1exp(2σ2(xiμ)2)

对似然函数取对数,得到对数似然函数:
ℓ ( μ , σ 2 ) = log ⁡ L ( μ , σ 2 ) = ∑ i = 1 n log ⁡ ( 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) ) \ell(\mu, \sigma^2) = \log L(\mu, \sigma^2) = \sum_{i=1}^n \log \left( \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x_i - \mu)^2}{2\sigma^2} \right) \right) (μ,σ2)=logL(μ,σ2)=i=1nlog(2πσ2 1exp(2σ2(xiμ)2))

我们可以将对数似然函数分解为三部分:
ℓ ( μ , σ 2 ) = − n 2 log ⁡ ( 2 π ) − n 2 log ⁡ ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=2nlog(2π)2nlog(σ2)2σ21i=1n(xiμ)2

现在我们分别对 μ \mu μ σ 2 \sigma^2 σ2 求导。


一、对 μ \mu μ 求导

首先,对 μ \mu μ 求导,方程中的 μ \mu μ 仅出现在最后一项 ∑ i = 1 n ( x i − μ ) 2 \sum_{i=1}^n (x_i - \mu)^2 i=1n(xiμ)2 中,因此我们只对这一项求导:
ℓ ( μ , σ 2 ) = − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=2σ21i=1n(xiμ)2

μ \mu μ 求导:
∂ ℓ ∂ μ = − 1 2 σ 2 ⋅ 2 ∑ i = 1 n ( x i − μ ) ( − 1 ) \frac{\partial \ell}{\partial \mu} = -\frac{1}{2\sigma^2} \cdot 2 \sum_{i=1}^n (x_i - \mu) (-1) μ=2σ212i=1n(xiμ)(1)

简化后为:
∂ ℓ ∂ μ = 1 σ 2 ∑ i = 1 n ( x i − μ ) \frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) μ=σ21i=1n(xiμ)

将这个导数设为 0,来找到 μ \mu μ 的极大似然估计:
1 σ 2 ∑ i = 1 n ( x i − μ ) = 0 \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0 σ21i=1n(xiμ)=0

因为 σ 2 ≠ 0 \sigma^2 \neq 0 σ2=0,我们可以省略 1 σ 2 \frac{1}{\sigma^2} σ21,得到:
∑ i = 1 n ( x i − μ ) = 0 \sum_{i=1}^n (x_i - \mu) = 0 i=1n(xiμ)=0

简化为:
n μ = ∑ i = 1 n x i n\mu = \sum_{i=1}^n x_i nμ=i=1nxi

因此, μ \mu μ 的极大似然估计为:
μ ^ = 1 n ∑ i = 1 n x i \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i μ^=n1i=1nxi

这意味着,样本的均值是 μ \mu μ 的极大似然估计。


二、对 σ 2 \sigma^2 σ2 求导

接下来我们对 σ 2 \sigma^2 σ2 求导。对数似然函数中关于 σ 2 \sigma^2 σ2 的部分是:
ℓ ( μ , σ 2 ) = − n 2 log ⁡ ( 2 π ) − n 2 log ⁡ ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=2nlog(2π)2nlog(σ2)2σ21i=1n(xiμ)2

我们对 σ 2 \sigma^2 σ2 求导,逐项进行求导:

  1. 第一项 − n 2 log ⁡ ( 2 π ) -\frac{n}{2} \log(2\pi) 2nlog(2π) 是常数,对 σ 2 \sigma^2 σ2 求导为 0。

  2. 第二项 − n 2 log ⁡ ( σ 2 ) -\frac{n}{2} \log(\sigma^2) 2nlog(σ2)

    使用对数函数的求导公式 d d σ 2 ( log ⁡ σ 2 ) = 1 σ 2 \frac{d}{d\sigma^2} (\log \sigma^2) = \frac{1}{\sigma^2} dσ2d(logσ2)=σ21,我们有:
    ∂ ∂ σ 2 ( − n 2 log ⁡ ( σ 2 ) ) = − n 2 σ 2 \frac{\partial}{\partial \sigma^2} \left( -\frac{n}{2} \log(\sigma^2) \right) = -\frac{n}{2\sigma^2} σ2(2nlog(σ2))=2σ2n

  3. 第三项 − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 2σ21i=1n(xiμ)2

    使用 d d σ 2 ( 1 σ 2 ) = − 1 σ 4 \frac{d}{d\sigma^2} \left( \frac{1}{\sigma^2} \right) = -\frac{1}{\sigma^4} dσ2d(σ21)=σ41,我们得到:
    ∂ ∂ σ 2 ( − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 ) = 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 \frac{\partial}{\partial \sigma^2} \left( - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right) = \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 σ2(2σ21i=1n(xiμ)2)=2σ41i=1n(xiμ)2

将各项导数结果组合

我们将对数似然函数中所有关于 σ 2 \sigma^2 σ2 的项求导结果组合起来:
∂ ℓ ∂ σ 2 = − n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 \frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 σ2=2σ2n+2σ41i=1n(xiμ)2

设置导数为 0,解出 σ 2 \sigma^2 σ2

为了找到 σ 2 \sigma^2 σ2 的极大似然估计,我们将导数设为 0:
− n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0 2σ2n+2σ41i=1n(xiμ)2=0

1. 消去常数 1 2 \frac{1}{2} 21

为了简化方程,两边同时乘以 2 消去常数:
− n σ 2 + 1 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 -\frac{n}{\sigma^2} + \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0 σ2n+σ41i=1n(xiμ)2=0

2. 将 n σ 2 \frac{n}{\sigma^2} σ2n 移到右边

将方程重排:
1 σ 4 ∑ i = 1 n ( x i − μ ) 2 = n σ 2 \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = \frac{n}{\sigma^2} σ41i=1n(xiμ)2=σ2n

3. 乘以 σ 4 \sigma^4 σ4

为了消去 σ 4 \sigma^4 σ4,我们将方程两边乘以 σ 4 \sigma^4 σ4
∑ i = 1 n ( x i − μ ) 2 = n σ 2 \sum_{i=1}^n (x_i - \mu)^2 = n \sigma^2 i=1n(xiμ)2=nσ2

4. 解出 σ 2 \sigma^2 σ2

σ 2 \sigma^2 σ2 留在一边,解出:
σ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 σ2=n1i=1n(xiμ)2

这个结果就是 σ 2 \sigma^2 σ2 的极大似然估计,即样本方差公式。


总结

我们通过对正态分布的对数似然函数分别对 μ \mu μ σ 2 \sigma^2 σ2 求导,得到以下结论:

  1. 均值 μ \mu μ 的极大似然估计
    μ ^ = 1 n ∑ i = 1 n x i \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i μ^=n1i=1nxi
    即样本的均值是 μ \mu μ 的极大似然估计。

  2. 方差 σ 2 \sigma^2 σ2 的极大似然估计
    σ ^ 2 = 1 n ∑ i = 1 n ( x i − μ ^ ) 2 \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2 σ^2=n1i=1n(xiμ^)2
    即样本方差是 σ 2 \sigma^2 σ2 的极大似然估计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/438611.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows UAC权限详解以及因为权限不对等引发软件工具无法正常使用的实例分析

目录 ​1、什么是UAC? 2、微软为什么要设计UAC? 3、标准用户权限与管理员权限 4、程序到底以哪种权限运行?与哪些因素有关? 4.1、给程序设置以管理员权限运行的属性 4.2、当前登录用户的类型 4.3、如何通过代码判断某个进程…

2.1MyBatis——ORM对象关系映射

2.1MyBatis——ORM对象关系映射 1. 验证映射配置2.ResultType和ResultMap2.1ResultMap是最终的ORM依据2.2ResultType和ResultMap的使用区别 3.具体的转换逻辑3.1 TypeHandle类型转换 5.总结 概括的说,MyBatis中,对于映射关系的声明是由开发者在xml文件手…

手机USB连接不显示内部设备,设备管理器显示“MTP”感叹号,解决方案

进入小米驱动下载界面,等小米驱动下载完成后,解压此驱动文件压缩包。 5、小米USB驱动安装方法:右击“计算机”,从弹出的右键菜单中选择“管理”项进入。 6、在打开的“计算机管理”界面中,展开“设备管理器”项&…

【数据分享】2000—2023年我国省市县三级逐年植被覆盖度(FVC)数据(Shp/Excel格式)

之前我们分享过2000—2023年逐月植被覆盖度(FVC)栅格数据(可查看之前的文章获悉详情)和Excel和Shp格式的省市县三级逐月FVC数据(可查看之前的文章获悉详情),原始的逐月栅格数据来源于高吉喜学者…

深度学习:迁移学习

目录 一、迁移学习 1.什么是迁移学习 2.迁移学习的步骤 1、选择预训练的模型和适当的层 2、冻结预训练模型的参数 3、在新数据集上训练新增加的层 4、微调预训练模型的层 5、评估和测试 二、迁移学习实例 1.导入模型 2.冻结模型参数 3.修改参数 4.创建类&#xff…

GAN|对抗| 生成器更新|判别器更新过程

如上图所示,生成对抗网络存在上述内容: 真实数据集;生成器;生成器损失函数;判别器;判别器损失函数;生成器、判别器更新(生成器和判别器就是小偷和警察的关系,他们共用的…

kubernetes基础操作(pod生命周期)

pod生命周期 一、Pod生命周期 我们一般将pod对象从创建至终的这段时间范围称为pod的生命周期,它主要包含下面的过程: ◎pod创建过程 ◎运行初始化容器(init container)过程 ◎运行主容器(main container&#xff…

记录一次病毒启动脚本

在第一次下载软件时,目录中配了一个使用说明,说是需要通过start.bat 这个文件来启动程序,而这个 start.bat 就是始作俑者: 病毒作者比较狡猾,其中start.bat 用记事本打开是乱码,但是可以通过将这个批处理…

spring揭秘24-springmvc02-5个重要组件

文章目录 【README】【1】HanderMapping-处理器映射容器【1.1】HanderMapping实现类【1.1.1】SimpleUrlHandlerMapping 【2】Controller(二级控制器)【2.1】AbstractController抽象控制器(控制器基类) 【3】ModelAndView(模型与视…

java入门基础(一篇搞懂)

​ 如果您觉得这篇文章对您有帮助的话 欢迎您分享给更多人哦 感谢大家的点赞收藏评论,感谢您的支持!!! 首先给大家推荐比特博哥,java入门安装的JDk和IDEA社区版的安装视频 JDK安装与环境变量的配置 IDEA社区的安装与使…

帝国CMS系统开启https后,无法登陆后台的原因和解决方法

今天本地配置好了帝国CMS7.5,传去服务器后,使用http访问一切正常。但是当开启了https(SSL)后,后台竟然无法登陆进去了。 输入账号密码后,点击登陆,跳转到/e/admin/ecmsadmin.php就变成页面一片…

SpringBoot基础(三):Logback日志

SpringBoot基础系列文章 SpringBoot基础(一):快速入门 SpringBoot基础(二):配置文件详解 SpringBoot基础(三):Logback日志 目录 一、日志依赖二、日志格式1、记录日志2、默认输出格式3、springboot默认日志配置 三、日志级别1、基础设置2、…

golang-基础知识(流程控制)

1 条件判断if和switch 所有的编程语言都有这个if,表示如果满足条件就做某事,不满足就做另一件事,go中的if判断和其它语言的区别主要有以下两点 1. go里面if条件判断不需要括号 2. go的条件判断语句中允许声明一个变量,这个变量…

FPGA-UART串口接收模块的理解

UART串口接收模块 背景 在之前就有写过关于串口模块的文章——《串口RS232的学习》。工作后很多项目都会用到串口模块,又来重新理解一下FPGA串口接收的代码思路。 关于串口相关的参数,以及在文章《串口RS232的学习》中已有详细的描述,这里就…

单调队列与单调栈<2>——单调栈

单调栈的定义 单调递增栈 栈中元素从栈底到栈顶是递增的。 单调递减栈 栈中元素从栈底到栈顶是递减的。 单调栈的核心内容 我们从左到右遍历元素,构造单调栈(从栈顶到栈底递增或减):在 i 从左往右遍历的过程中,我…

手写堆排序

手写堆排序 摘要:本文记录使用go语言实现堆排序 堆的构建 堆性质: 对于每个小堆,父节点与两个子节点比较,父节点比左子节点大,也比右子节点大。 有五个数: 1,2,3,4,5 分别进行入栈。过程如下 (1) 堆为…

(作业)第三期书生·浦语大模型实战营(十一卷王场)--书生入门岛通关第3关Git 基础知识

任务编号 任务名称 任务描述 1 破冰活动 提交一份自我介绍。 2 实践项目 创建并提交一个项目。 破冰活动 提交一份自我介绍。 每位参与者提交一份自我介绍。 提交地址:https://github.com/InternLM/Tutorial 的 camp3 分支~ 安装并设置git 克隆仓库并…

[深度学习][python]yolov11+deepsort+pyqt5实现目标追踪

【算法介绍】 YOLOv11、DeepSORT和PyQt5的组合为实现高效目标追踪提供了一个强大的解决方案。 YOLOv11是YOLO系列的最新版本,它在保持高检测速度的同时,通过改进网络结构、优化损失函数等方式,提高了检测精度,能够同时处理多个尺…

CSS选择器的全面解析与实战应用

CSS选择器的全面解析与实战应用 一、基本选择器1.1 通配符选择器(*)2.标签选择器(div)1.3 类名选择器(.class)4. id选择器(#id) 二、 属性选择器(attr)三、伪…

欧几里得算法--(密码学基础)

根基:gcd(a,b)gcd(b,a mod b) 先举个例子吧,gcd(16,6)gcd(6,4)gcd(4,2)gcd(2,0)2 学习这个定理的时候我想了几个问题. 第一个问题:为什么求出的就一定是他们两个数的公约数? 这个问题很简单我们只需要通过几何来计较即可&#x…