卷积神经网络(CNN)的计算量和参数怎么准确估计?

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


在这里插入图片描述

1. 卷积层(Convolutional Layer)

a) 计算量估计:

卷积层的 FLOPs = 2 * H_out * W_out * C_in * C_out * K_h * K_w

详细解释:

  • H_out, W_out:输出特征图的高度和宽度
  • C_in:输入通道数
  • C_out:输出通道数(卷积核数量)
  • K_h, K_w:卷积核的高度和宽度
  • 乘以 2 是因为每次卷积操作包含一次乘法和一次加法

注意:输出特征图的尺寸可以通过以下公式计算:
H_out = (H_in - K_h + 2P) / S + 1
W_out = (W_in - K_w + 2P) / S + 1
其中,H_in 和 W_in 是输入特征图的高度和宽度,P 是填充(padding),S 是步长(stride)。

b) 参数数量估计:

卷积层的参数数 = (K_h * K_w * C_in + 1) * C_out

解释:

  • K_h * K_w * C_in 是每个卷积核的权重数量
  • 加 1 是因为每个卷积核还有一个偏置项(bias)
  • 乘以 C_out 是因为有 C_out 个卷积核

2. 全连接层(Fully Connected Layer)

a) 计算量估计:

全连接层的 FLOPs = 2 * N_in * N_out

解释:

  • N_in:输入神经元数量
  • N_out:输出神经元数量
  • 乘以 2 同样是因为每个连接包含一次乘法和一次加法

b) 参数数量估计:

全连接层的参数数 = (N_in + 1) * N_out

解释:

  • N_in * N_out 是权重的数量
  • 加 1 再乘以 N_out 是因为每个输出神经元有一个偏置项

3. 池化层(Pooling Layer)

a) 计算量估计:

对于最大池化(Max Pooling):FLOPs ≈ H_out * W_out * C * K_h * K_w
对于平均池化(Average Pooling):FLOPs ≈ 2 * H_out * W_out * C * K_h * K_w

解释:

  • H_out, W_out:输出特征图的尺寸
  • C:通道数(与输入相同)
  • K_h, K_w:池化窗口的高度和宽度

b) 参数数量:池化层通常没有可学习的参数

4. 激活函数(Activation Functions)

激活函数的计算量通常较小,但在精确计算时可以考虑:

ReLU 的 FLOPs ≈ H * W * C (仅需要比较操作)
Sigmoid / {/} /Tanh 的 FLOPs 会更多,因为涉及指数计算

5. 批归一化层(Batch Normalization)

a) 计算量估计:

BN 层的 FLOPs ≈ 4 * H * W * C

解释:需要计算均值、方差、归一化和缩放 / {/} / 平移

b) 参数数量:

BN 层的参数数 = 2 * C (每个通道有一个缩放因子和一个平移因子)

6. 总体估算

要估算整个 CNN 的计算量和参数数量,需要:

  1. 分析网络架构中的每一层
  2. 根据上述方法计算每层的 FLOPs 和参数数
  3. 将所有层的结果相加

注意事项:

  • 实际运行时的计算量可能与理论估计有差异,因为现代硬件和优化技术可能会影响实际性能。
  • 某些操作(如数据传输)虽然不直接体现在 FLOPs 中,但也会影响实际运行时间。
  • 在设计神经网络时,平衡计算复杂度和模型性能是很重要的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/438857.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLO11改进|注意力机制篇|引入HAT超分辨率重建模块

目录 一、HAttention注意力机制1.1HAttention注意力介绍1.2HAT核心代码 二、添加HAT注意力机制2.1STEP12.2STEP22.3STEP32.4STEP4 三、yaml文件与运行3.1yaml文件3.2运行成功截图 一、HAttention注意力机制 1.1HAttention注意力介绍 HAT模型 通过结合卷积特征提取与多尺度注意…

推荐 uniapp 相对好用的海报生成插件

插件地址:自定义canvas样式海报 - DCloud 插件市场 兼容性也是不错的:

MySQL基础篇 - 事务

01 事务的简介 【1】什么是事务:事务是一组操作集合,要么同时操作成功,要么同时操作失败。 【2】对于MySQL数据库来说默认一条SQL语句就是一个事务,且事务是默认自动提交的。 我们可以把多条SQL语句设置成一个事务,使…

java:pdfbox 删除扫描版PDF中文本水印

官网下载 https://pdfbox.apache.org/download.html下载 pdfbox-app-3.0.3.jar cd D:\pdfbox 运行 java -jar pdfbox-app-3.0.3.jar java -jar pdfbox-app-3.0.3.jar Usage: pdfbox [COMMAND] [OPTIONS] Commands:debug Analyzes and inspects the internal structu…

Spring Boot技术栈:打造高效在线商城

2 相关技术 2.1 Springboot框架介绍 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。通过这种方式,Spring…

重学SpringBoot3-集成Redis(一)

更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 重学SpringBoot3-集成Redis(一) 1. 项目初始化2. 配置 Redis3. 配置 Redis 序列化4. 操作 Redis 工具类5. 编写 REST 控制器6. 测试 API7. 总结 随…

vSAN01:vSAN简介、安装、磁盘组、内部架构与调用关系

目录 传统的共享存储vSAN存储OSA的系统要求vSAN安装vSAN集群vSAN skyline healthvSAN与HA磁盘组混合磁盘架构全闪磁盘架构 vSAN对象vSAN内部架构 传统的共享存储 通过隔离的存储网络使得不同的ESXi主机访问独立的存储设备。需要前期投入较高的资金单独采购存储、网络可以单独规…

【Windows】自定义显示器的分辨率

背景 由于本人更新驱动导致2个显示器里面,有一个显示器的分辨率只剩下2个可以调节 这样就导致2个显示器分辨率不同,更新了多次驱动都修复不了,所以想着看能不能自定义分辨率 工具下载 显示器自定义分辨率工具 或者百度搜索 Custom Resolu…

STM32GPIO输入和输出

目录 一、先看IO端口位的结构 1、I/O输入: 2、I/O输出: 二、GPIO模式 三、枚举类型 四、GPIO输出点亮LED 五、LED流水灯 六、让蜂鸣器响起来 七、光敏传感器控制蜂鸣器 一、先看IO端口位的结构 上面部分是输入,下面是输出。 1、I/O输…

JAVA基础语法 Day11

一、Set集合 Set特点:无序(添加数据的顺序和获取出的数据顺序不一致),不重复,无索引 public class demo1 {public static void main(String[] args) {//1.创建一个集合//HashSet特点:无序,不重…

【操作系统】体系结构

🌹😊🌹博客主页:【Hello_shuoCSDN博客】 ✨操作系统详见 【操作系统专项】 ✨C语言知识详见:【C语言专项】 目录 操作系统的内核 操作系统结构——分层结构 操作系统结构——模块化 操作系统结构——宏内核、微内核…

Unity各个操作功能+基本游戏物体创建与编辑+Unity场景概念及文件导入导出

各个操作功能 部分功能 几种操作游戏物体的方式: Center:有游戏物体父子关系的时候,中心点位置 Global/Local:世界坐标系方向/自身坐标系方向 :调试/暂停/下一帧 快捷键 1.Alt鼠标左键:可以实现巡游角度查看场景 2.鼠标滚轮…

Linux忘记root用户密码怎么重设密码

直接说步骤: 1.重启客户机 2.在选择内核页面快速按e键,进入编辑模式 进入后应该是这个样子 在这里只能按上下键切换行 找到Linux16这里 3.按右方向键切换到行尾,也就是UTF-8处,在后面添加一个空格,然后加上这段话 …

【回眸】Tessy 单元测试软件使用指南(四)常见报错及解决方案与批量初始化的经验

前言 分析时Tessy的报错 1.fatal error: Tricore/Compilers/Compilers.h: No such file or directory 2.error: #error "Compiler unsupported" 3.warning: invalid suffix on literal;C11 requires a space between literal and string macro 4.error: unknown…

C0004.Qt中QComboBox设置下拉列表样式后,下拉列表样式无效的解决办法

问题描述 我们平时在使用Qt Creator对控件QComboBox的样式进行设置后,在运行程序启动界面时,发现设置的样式无效,效果如下: /* 设置下拉菜单框的样式 */ QComboBox QAbstractItemView {border: 1px solid rgb(161,161,161); /* …

【D3.js in Action 3 精译_028】3.4 小节 DIY 实战:使用 Observable 在线绘制 D3 条形图

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一部分 D3.js 基础知识 第一章 D3.js 简介(已完结) 1.1 何为 D3.js?1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践(上)1.3 数据可…

leetcode135:分发糖果

步骤1:计算问题性质的定义 我们需要解决的题目是一个典型的贪心算法问题,要求分发糖果的数量,满足特定条件。以下是问题的详细定义: 输入: ratings:长度为 n 的数组,表示每个孩子的评分&#x…

【51单片机】点亮LED之经典流水灯

开发环境 开发板:普中51-单核-A2单片机:STC89C52RC(双列直插40引脚 DIP40)Keil uVision5 v9.61 最新版破解方法自行百度,相关文档和视频资料很多,我自己将这一操作记录下来当做博客发布,CSDN以…

Pikachu-Unsafe FileUpload-客户端check

上传图片,点击查看页面的源码, 可以看到页面的文件名校验是放在前端的;而且也没有发起网络请求; 所以,可以通过直接修改前端代码,删除 checkFileExt(this.value) 这部分; 又或者先把文件名改成…

职业技术学校开设无人机培训技术详解

职业技术学校开设无人机培训技术,是一个涉及多个方面的综合性教学过程。以下是对该培训技术的详细解析: 一、培训目标 无人机培训技术的目标在于培养学员掌握无人机的基本原理、组装调试、飞行操作、安全规范及维修保养等技能,使其成为具备…