深度学习之开发环境(CUDA、Conda、Pytorch)准备(4)

目录

1.CUDA 介绍

1.1 CUDA 的基本概念

1.2 CUDA 的工作原理

1.3 CUDA 的应用领域

2. 安装CUDA

2.1 查看GPU版本

 2.2 升级驱动(可选)

2.3 查看CUDA版本驱动对应的支持的CUDA ToolKit工具包

2.4 下载Toolkit

2.5 安装(省略)

2.6 验证安装 nvcc -V

2.7 卸载 CUDA版本(可选)

3. Anaconda 介绍

3.1 Anaconda 的主要功能和特点:

3.2 Anaconda 的使用场景

4. 安装Anaconda

4.1 安装(省略)

4.2 配置环境变量Path

4.3 验证

4.4 更改镜像源

4.5 修改默认存储位置(可选,但建议修改)

4.6 常用命令

4.6.1 常用快捷键

4.6.2 常用命令(Jupyter Notebook)

4.6.3 常用命令(Anaconda Prompt )

环境管理

包管理

缓存与配置

 其他常用命令

 5. Pytorch 介绍

PyTorch 的特点

6. 安装Pytorch

6.1 创建conda虚拟环境

6.2 安装 pytorch

验证


1.CUDA 介绍

       CUDA(Compute Unified Device Architecture)是由NVIDIA公司推出的一种并行计算平台和编程模型,它使得开发者能够利用NVIDIA GPU的强大并行计算能力来加速计算密集型任务。CUDA 不仅是一种编程语言,更是一个完整的开发平台,包括了硬件、软件、驱动程序、库和工具等。

1.1 CUDA 的基本概念

  1. 硬件支持:CUDA 要求使用支持 CUDA 技术的 NVIDIA GPU。这些 GPU 包含了大量的计算单元(CUDA Cores),能够同时执行多个线程,以实现并行计算。

  2. 编程模型:CUDA 提供了基于 C/C++ 的编程模型,允许开发者编写在 GPU 上执行的代码。CUDA 代码通常分为两部分:一部分运行在主机(Host,通常是 CPU)上,另一部分运行在设备(Device,通常是 GPU)上。运行在设备上的代码称为核函数(Kernel),它们由主机上的代码调用并在 GPU 上并行执行。

  3. 内存层次结构:CUDA 设计了一个多层次的内存体系结构,包括全局内存(Global Memory)、共享内存(Shared Memory)、常量内存(Constant Memory)、纹理内存(Texture Memory)等。不同类型的内存具有不同的访问特性和速度,合理使用这些内存可以显著提升程序性能。

    9de07c5bcb104851a7742174513ce8cd.png

1.2 CUDA 的工作原理

1b13e588f8c04b0e89dcbe74aec0c4db.png

  1. 主机与设备:在 CUDA 中,CPU 称为主机(Host),GPU 称为设备(Device)。主机负责启动计算任务,并将数据传输到设备上,设备负责执行并行计算任务。

  2. 网格与块:CUDA 中的并行任务组织成网格(Grid),每个网格包含多个块(Block),每个块又包含多个线程(Thread)。这种层次结构允许开发者控制并行程度和数据共享方式。

  3. 核函数:这是在 GPU 上运行的函数,由主机代码调用。每个线程执行核函数的一份拷贝,每个线程处理数据的不同部分。核函数是 CUDA 程序的核心,它们在 GPU 上并行执行,处理大量的数据。

1.3 CUDA 的应用领域

  • 深度学习:许多深度学习框架,如 TensorFlow、PyTorch 等,都支持 CUDA 加速,能够大幅加快模型训练和推理的速度。通过 CUDA,可以利用 GPU 的并行计算能力来加速神经网络的训练和预测。
  • 科学计算:CUDA 可以用于模拟物理、化学等领域中的复杂系统,加速数值计算。例如,在分子动力学模拟、天气预报等方面,CUDA 可以提供显著的性能提升。
  • 图像和视频处理:利用 GPU 的并行处理能力,CUDA 可以加速图像和视频的渲染和处理任务。从图像识别到视频编辑,CUDA 都能提供强大的支持。
  • 金融建模:在金融行业中,CUDA 可以用于快速计算期权定价、风险评估等复杂的金融模型。

2. 安装CUDA

TIP:后续需要安装Pytorch,可先检查Pytorch版本是否与CUDA版本相匹配再决定是否升级CUDA。

       笔者环境:CUDA v11.2,驱动 v462.42 ,但Pytorch 早期版本支持CUDA v11.1 和v11.3,就会比较纠结。

       于是升级驱动 v561.09,CUDA v12.6,但Pytorch 最新版本支持的CUDA v12.1 和v12.4

2.1 查看GPU版本

cmd命令输入 nvidia-smi

8c2064c3a54149068a0c2ea853e97f02.png

 2.2 升级驱动可选

如果显卡驱动版本过低,检查是否可以升级驱动

NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA

手动升级

 自动升级:下载GeForce 

 验证升级:

2.3 查看CUDA版本驱动对应的支持的CUDA ToolKit工具包

CUDA 12.6 Update 1 Release Notes

5fcdb84aa37345fdaf800f1ce7c0f977.png

2.4 下载Toolkit

CUDA Toolkit Archive | NVIDIA Developer

2.5 安装(省略)

2.6 验证安装 nvcc -V

9c853753f74347b1bc1b0c8cb64ec9f6.png

2.7 卸载 CUDA版本(可选)

卸载旧版本,为了安装新版本

控制面板-程序和功能,选择对应的程序进行卸载


3. Anaconda 介绍

        Anaconda 是一个开源的 Python 和 R 语言的分发版本,主要用于数据科学、机器学习和大数据分析。它提供了一个完整的科学计算环境,包含了多种流行的数据分析、可视化、机器学习等工具包,是数据科学和开发人员的常用平台。Anaconda 可以在不同的操作系统上运行,包括 Windows、macOS 和 Linux。

3.1 Anaconda 的主要功能和特点:

  • 包管理和环境管理:

Anaconda 内置了 Conda,一个强大的包管理和环境管理工具。它可以轻松地创建独立的虚拟环境、安装和管理不同版本的 Python 以及其他科学计算相关的库,避免包冲突。

  • 内置常用库:

Anaconda 默认自带超过 1500 个数据科学和机器学习相关的库,比如 NumPy、Pandas、Matplotlib、SciPy、Scikit-learn 等,不需要手动安装,节省开发时间。

  • Jupyter Notebook:

Anaconda 集成了 Jupyter Notebook,这是一个交互式的开发环境,方便进行数据分析和算法调试。开发人员可以在一个网页界面中编写和运行代码,并即时查看结果。

  • 图形界面管理工具:

Anaconda 提供了一个可视化管理界面,叫做 Anaconda Navigator,用户可以通过图形界面轻松管理包、创建环境、启动 Jupyter Notebook 或其他工具,比如 Spyder、RStudio。

  • 跨平台支持:

无论你使用的是 Windows、macOS 还是 Linux,Anaconda 都能提供一致的开发体验,并支持在不同操作系统上进行科学计算。

  • 简化部署:

Anaconda 通过 Conda 包管理器,支持快速的项目部署。它可以将整个开发环境打包,确保在不同机器上都能复现项目的环境配置。

3.2 Anaconda 的使用场景

  • 数据科学: Anaconda 是数据科学家们的理想工具,提供了大量用于数据清洗、分析、建模的工具和库。
  • 机器学习: 内置常用机器学习库如 TensorFlow、Keras、Scikit-learn 等,方便搭建、训练和测试机器学习模型。
  • 大数据分析: 通过与 Hadoop、Spark 等工具的集成,Anaconda 支持大规模数据处理和分布式计算。

4. 安装Anaconda

官网地址:

Download Now | Anaconda

4eecfa9682c0400683e4319c8fc29147.png

镜像地址下载(可选,速度较快):anaconda | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

4.1 安装(省略)

4.2 配置环境变量Path

F:\IT\software\Anaconda3\Library\bin   #替换为你真实的安装路径

aec8be87ee9d4d58826b9d5a31165c44.png

4.3 验证

按下Win+R,输入cmd打开终端。 ac677c04bfda4010861d1f3ec183a28e.png

4.4 更改镜像源

  • 创建 .condarc 文件

不同系统下的 .condarc 目录如下:
- Linux: ${HOME}/.condarc
- macOS: ${HOME}/.condarc
- Windows: C:\Users\<YourUserName>\.condarc

TIP:* Windows 用户无法直接创建名为 .condarc 的文件,

可先执行 conda config --set show_channel_urls yes 生成该文件之后再修改

 .condarc 文件插入以下内容

channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

4.5 修改默认存储位置(可选,但建议修改)

.condarc 文件末尾追加,注意:同时修改envs和pkgs 

envs_dirs:- E:\IT\conda_env
pkgs_dirs:    - E:\IT\conda_pkgs
  •  验证

conda info ,发现默认路径修改了

conda create env_name ,默认路径也修改了

参考信息 anaconda | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror


4.6 常用命令

  • Jupyter Notebook 使用

打开Jupyter Notebook 即可 / 或者打开Anaconda Prompt 输入jupyter notebook

e1a8f6c0efed40de9895909bad988bf5.png
4.6.1 常用快捷键

Jupyter Notebook有两种输入模式:命令模式和编辑模式。

  • 命令模式(蓝色边框):用于控制单元格的行为,如添加、删除、移动单元格等。
    • A:在当前单元格上方插入新单元格。
    • B:在当前单元格下方插入新单元格。
    • D, D(连续按两次D):删除当前单元格。
    • M:将当前单元格转换为Markdown模式。
    • Y:将当前Markdown单元格转换为代码模式。
    • Enter:进入编辑模式。
  • 编辑模式(绿色边框):用于在单元格中输入代码或文本。
    • Tab:代码补全。
    • Shift + Tab:显示函数的文档字符串。
    • Ctrl + Enter:运行当前单元格。
    • Shift + Enter:运行当前单元格并选中下一个单元格。
    • Alt + Enter:运行当前单元格并在下方插入新单元格。
  • 模式切换:通过按Esc键可以从编辑模式切换到命令模式,通过按Enter键可以从命令模式切换到编辑模式。
  • 代码执行:在编辑模式下,可以使用上述快捷键或点击工具栏中的“运行”按钮来执行单元格中的代码。
  • Markdown支持:Jupyter Notebook支持Markdown语法,可以在Markdown单元格中编写格式化的文本、插入链接、图片等。
4.6.2 常用命令(Jupyter Notebook)
  1. 安装包
    • 使用pip安装库:pip install 包名 -i https://pypi.tuna.tsinghua.edu.cn/simple(使用清华源加速下载)
    • 查看当前环境:import sys; print(sys.executable)
    • 查看已安装包及其版本:pip list
  2. 文件读取
    • 读取Excel文件:使用pandas库,pd.read_excel('文件名.xlsx')
    • 读取CSV文件:使用pandas库,pd.read_csv('文件名.csv')
  3. 系统查看
    • 查看操作系统信息:import platform; print(platform.platform())
    • 查看Python运行环境信息:import sys; print(sys.version)
    • Linux系统查看GPU信息:!nvidia-smi
    • Linux系统查看内存信息:!free -h
    • Linux系统查看CPU信息:cat /proc/cpuinfo
  4. 魔法命令(Magic Commands)
    • %matplotlib inline:在Jupyter Notebook中嵌入Matplotlib生成的图形。
    • %time:测量单个语句的执行时间。
    • %timeit:提供更准确的代码运行时间测量,自动多次执行以计算平均值和标准差。
    • %ls:列出当前目录的文件和文件夹。
    • %pwd:显示当前工作目录。
    • %run:运行外部Python脚本。
    • %load:将外部脚本的内容加载到当前单元格中。
4.6.3 常用命令(Anaconda Prompt )

打开Anaconda Prompt 

a. 环境管理
  • 创建新环境

# 创建一个名为 myenv_name 的新环境,并指定Python版本为3.10。

conda create --name myenv_name python=3.10

# 从environment.yml文件中创建环境。
conda env create -f environment.yml

  • 查看已有环境

# 列出所有已创建的环境

conda info --envs 或 conda env list

  • 激活环境

# 激活名为 myenv_name 的环境

conda activate myenv_name

  • 退出环境

# 退出当前激活的环境

conda deactivate

  • 删除环境

# 删除名为myenv的环境及其中的所有包

conda remove --name myenv_name --all

  • 复制环境

# 复制名为old_env的环境到名为new_env的新环境

conda create --name new_env --clone old_env

b. 包管理
  • 安装包

# 在当前环境中安装numpy包
conda install numpy
# 安装指定版本的numpy包
conda install numpy=1.20
# 从conda-forge频道安装numpy包
conda install numpy -c conda-forge

  • 更新包

# 更新numpy包到最新版本
conda update numpy

  • 卸载包

# 卸载numpy包
conda remove numpy

  • 搜索包

# 搜索numpy包的所有可用版本
conda search numpy

c. 缓存与配置
  • 清理缓存

# 清理conda的缓存,包括下载的包和临时文件

conda clean --all

  • 查看配置

# 显示当前conda的配置信息

conda config --show

  • 添加/删除/设置镜像源

# 添加镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

# 删除镜像源:

conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

# 设置默认镜像源:

conda config --prepend channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

d. 其他常用命令
  • 查看conda版本

# 显示conda的版本号

conda --version 或 conda -V

  • 查看已安装包

# 在激活的环境中列出所有已安装的包

conda list

# 列出指定环境(如myenv)中已安装的包。

conda list -n myenv


 5. Pytorch 介绍

       PyTorch 是一个开源的机器学习库,由 Facebook 的人工智能研究实验室 FAIR(Facebook AI Research)开发并维护。它主要用于实现深度学习模型,并且提供了强大的 GPU 加速功能。PyTorch 的设计初衷是为了提供灵活性和易用性,使得研究人员可以更方便地进行实验。

PyTorch 的特点

  1. 动态计算图:与一些需要静态图定义的框架不同,PyTorch 支持动态构建计算图,这使得开发者在调试和修改模型时更加灵活方便。

  2. 易于上手:PyTorch 使用 Python 语言编写,API 设计直观,接近自然语言,易于学习和使用。

  3. 自动微分:PyTorch 提供了自动求导的功能,简化了梯度计算的过程,使得开发者能够专注于模型的设计而不是繁琐的数学推导。

  4. 丰富的预训练模型库:PyTorch 拥有大量预训练好的模型,用户可以直接使用这些模型进行迁移学习等任务。

  5. 强大的社区支持:由于其灵活性和易用性,PyTorch 获得了广泛的社区支持,包括大量的插件、教程和第三方库。

  6. 分布式训练支持:PyTorch 提供了分布式训练的支持,可以用于多机多卡的场景,这对于大规模数据集的处理非常有用。

  7. 可移植性和生产环境部署:PyTorch 还提供了工具来将模型转换为 C++ 可执行文件或者 ONNX 格式,便于在生产环境中部署。

6. 安装Pytorch

官网地址:PyTorch

6.1 创建conda虚拟环境

conda create --name deeplearn python=3.10

conda activate deeplearn

6.2 安装 pytorch

conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia

验证
(E:\IT\conda_env\deeplearn) C:\Users\*****>python
Python 3.10.14 | packaged by Anaconda, Inc. | (main, May  6 2024, 19:44:50) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> x = torch.rand(5)
>>> x
tensor([0.5679, 0.3314, 0.5000, 0.6988, 0.2062])
>>>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/439700.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

均值模板和二阶差分模板的频率响应

均值模板和二阶差分模板都是偶对称。实偶函数的傅里叶变换仍是实偶函数。 给个证明过程 实偶函数 一个函数 f ( x ) f(x) f(x) 被称为实偶函数&#xff0c;如果它满足以下条件&#xff1a; f ( − x ) f ( x ) f(-x) f(x) f(−x)f(x) 傅里叶变换 对于一个实偶函数 f (…

用Python实现运筹学——Day 13: 线性规划的高级应用

一、学习内容 1. 多目标线性规划 多目标线性规划&#xff08;MOLP&#xff09;是线性规划的扩展形式&#xff0c;涉及多个相互冲突的目标函数。这类问题在实际应用中非常普遍&#xff0c;例如在供应链管理中&#xff0c;可能需要同时优化成本、时间、质量等多个目标。由于多个…

python如何比较字符串

Python可使用cmp()方法来比较两个对象&#xff0c;相等返回 0 &#xff0c;前大于后&#xff0c;返回 1&#xff0c;小于返回 -1。 a "abc" b "abc" c "aba" d "abd" print cmp(a,b) print cmp(a,c) print cmp(a,d) //返回 0 1 …

速览!2024 CSP-J1/S1 河北也被实名举报泄题

据NOI官网消息&#xff0c;继2024 CSP-J/S第一轮认证陕西鸿泉培训机构泄题之后&#xff0c;重考&#xff01;CSP-J/S 2024第一轮认证泄题后续进展及疑问&#xff0c;河北某学校也被学生实名举报泄题&#xff0c;河北某同学在认证前一天以非正当手段获得了认证题目且属实&#x…

(C语言贪吃蛇)16.贪吃蛇食物位置随机(完结撒花)

目录 前言 修改方向 修改内容 效果展示 两个新的问题&#x1f64b; 1.问题1 2.问题2 代码如下&#xff1a; 前言 我们上一节实现了贪吃蛇吃食物身体节点变长&#xff0c;但是食物的刷新位置不是随机的&#xff0c;并且初始化几次后食物就刷不见了&#xff0c;本节我们就来…

论文阅读笔记-How to Fine-Tune BERT for Text Classification?

前言 How to Fine-Tune BERT for Text Classification? 预训练语言模型很强,通过微调可以给你的任务模型带来明显的提升,但是针对具体的任务如何进行微调使用,就涉及到了考经验积累的tricks,最近在打文本相关的比赛,正好用预训练模型为基础构建下游任务模型,所以着重的…

qemu模拟arm64环境-构建6.1内核以及debian12

一、背景 手头没有合适的arm64开发板&#xff0c;但是需要arm的环境&#xff0c;于是想到qemu模拟一个。除了硬件交互以外&#xff0c;软件层面的开发还是都可以实现的。 虚拟机还能自定义内存大小和镜像大小&#xff0c;非常适合上板前的验证&#xff0c;合适的话再买也不迟。…

C++面向对象:继承!

前言 继承是面向对象三大特性之一&#xff0c;所有的面向对象的语言都具备这三个性质&#xff0c;我们之前已经介绍过了封装的相关概念&#xff0c;今天我们来学习一下第二大特性&#xff1a;继承。 一.继承的概念 什么是继承&#xff1f; 定义&#xff1a;继承&#xff08;…

第十二届蓝桥杯嵌入式省赛程序设计题解析(基于HAL库)(第一套)

一.题目分析 &#xff08;1&#xff09;.题目 &#xff08;2&#xff09;.题目分析 1.串口功能分析 a.串口接收车辆出入信息&#xff1a;通过查询车库的车判断车辆是进入/出去 b.串口输出计费信息&#xff1a;输出编号&#xff0c;时长和费用 c.计算停车时长是难点&#x…

【IO】多路转接Select

一、初识 select 系统提供 select 函数来实现多路复用输入/输出模型. select 系统调用是用来让我们的程序监视多个文件描述符的状态变化的;程序会停在 select 这里等待&#xff0c;直到被监视的文件描述符有一个或多个发生了状态改变; select 函数原型 C #include <sys/…

Python+Django微信小程序前后端人脸识别登录注册

程序示例精选 PythonDjango微信小程序前后端人脸识别登录注册 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《PythonDjango微信小程序前后端人脸识别登录注册》编写代码&#xff0c;代码整…

基于SpringBoot+Vue+MySQL的在线学习交流平台

系统展示 用户前台界面 管理员后台界面 系统背景 随着互联网技术的飞速发展&#xff0c;在线学习已成为现代教育的重要组成部分。传统的面对面教学方式已无法满足广大学习者的需求&#xff0c;特别是在时间、地点上受限的学习者。因此&#xff0c;构建一个基于SpringBoot、Vue.…

2024年最新大模型LLM学习路径全解析!看完你就是LLM大师

ChatGPT的出现在全球掀起了AI大模型的浪潮&#xff0c;2023年可以被称为AI元年&#xff0c;AI大模型以一种野蛮的方式&#xff0c;闯入你我的生活之中。 从问答对话到辅助编程&#xff0c;从图画解析到自主创作&#xff0c;AI所展现出来的能力&#xff0c;超出了多数人的预料&…

华为eNSP:端口隔离

一&#xff0c;什么是端口隔离 端口隔离是一种网络配置技术&#xff0c;用于将不同的网络设备或用户隔离在不同的虚拟局域网&#xff08;VLAN&#xff09;中&#xff0c;以实现网络流量的隔离和安全性提升。通过在交换机或路由器上配置端口隔离&#xff0c;可以将连接到同一设…

Java多线程(2)—线程创建

Java多线程(2)—线程创建 一、线程创建简介 在Java中&#xff0c;创建线程可以通过两种主要方式&#xff1a;继承 Thread​ 类、实现 Runnable​ 、实现Callable ​接口和线程池。 ​ ‍ 二、创建方式 2.1 继承 Thread 类 示例1 ♠①&#xff1a;创建一个类继承 Thread…

【工程测试技术】第6章 信号处理初步,频谱分析,相关系数

目录 6.1 数字信号处理的基本步骤 6.2 离散信号及其频谱分析 6.2.1 概述 6.2.2 时域采样、混叠和采样定理 6.2.3 量化和量化误差 6.2.4 截断、泄漏和窗函数 6.2.5 频域采样、时域周期延拓和栅栏效应 6.2.6 频率分辨率、整周期截断 6.3 相关分析及其应用 6.3.1 两…

前端学习第二天笔记 CSS选择 盒子模型 浮动 定位 CSS3新特性 动画 媒体查询 精灵图雪碧图 字体图标

CSS学习 CSS选择器全局选择器元素选择器类选择器ID选择器合并选择器 选择器的优先级字体属性背景属性文本属性表格属性表格边框折叠边框表格文字对齐表格填充表格颜色 关系选择器后代选择器子代选择器相邻兄弟选择器通用兄弟选择器 CSS盒子模型弹性盒子模型父元素上的属性flex-…

STM32三种启动模式:【详细讲解】

STM32在上电后&#xff0c;从那里启动是由BOOT0和BOOT1引脚的电平决定的&#xff0c;如下表&#xff1a; BOOT模式选引脚启动模式BOOT0BOOT1X0主Flash启动01系统存储器启动11内置SRAM启动 BOOT 引脚的值在重置后 SYSCLK 的第四个上升沿时被锁定。在重置后,由用户决定是如何设…

基于springboot vue3 在线考试系统设计与实现 源码数据库 文档

博主介绍&#xff1a;专注于Java&#xff08;springboot ssm springcloud等开发框架&#xff09; vue .net php phython node.js uniapp小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设&#xff0c;从业十五余年开发设计教学工作☆☆☆ 精彩专栏推荐订阅☆☆☆☆…

基于元神操作系统实现NTFS文件操作(六)

1. 背景 本文主要介绍$Root元文件属性的解析。先介绍元文件各属性的属性体构成&#xff0c;然后结合读取到的元文件内容&#xff0c;对测试磁盘中目标分区的根目录进行展示。 2. $Root元文件属性的解析 使用每个属性头偏移0x04-0x07处的值可以从第一个属性开始依次定位下一个…