输电线路悬垂线夹检测无人机航拍图像数据集,总共1600左右图片,悬垂线夹识别,标注为voc格式

 

输电线路悬垂线夹检测无人机航拍图像数据集,总共1600左右图片,悬垂线夹识别,标注为voc格式

输电线路悬垂线夹检测无人机航拍图像数据集介绍

数据集名称

输电线路悬垂线夹检测数据集 (Transmission Line Fittings Detection Dataset)

数据集概述

该数据集是一个专门用于训练和评估输电线路悬垂线夹识别模型的数据集。数据集包含大约1600张由无人机航拍的图像,每张图像都带有详细的标注信息,标注格式为VOC(Pascal VOC)格式。这些图像涵盖了多种类型的悬垂线夹及其在不同环境下的状态,适用于基于深度学习的目标检测任务。通过这个数据集,可以训练出能够在复杂环境中准确检测和分类悬垂线夹的模型,从而帮助进行电力设施维护、故障检测等应用。

数据集特点
  • 高质量航拍图像:数据集中的图像均来自无人机航拍,具有高分辨率,能够提供丰富的细节信息,特别适合输电线路设备的特征分析。
  • 带标注:每张图像都有详细的标注信息,包括悬垂线夹的位置和大小。
  • VOC格式标注:标注信息以VOC格式提供,方便直接使用于支持VOC格式的目标检测框架。
  • 实际应用场景:适用于需要精确检测输电线路悬垂线夹的场景,如电力设施维护、故障检测系统等。
数据集结构
transmission_line_fittings_detection_dataset/
├── images/                            # 图像文件
│   ├── 00001.jpg                      # 示例图像
│   ├── 00002.jpg
│   └── ...
├── annotations/                       # Pascal VOC格式标注文件
│   ├── 00001.xml                      # 示例VOC标注文件
│   ├── 00002.xml
│   └── ...
├── data.yaml                          # 类别描述文件
├── README.md                          # 数据集说明
└── model/                             # 预训练模型文件夹(可选)└── transmission_line_fittings_detection_model.pt  # 预训练模型(如果有的话)
数据集内容
  1. images/

    • 功能:存放图像文件。
    • 内容
      • 00001.jpg:示例图像。
      • 00002.jpg:另一张图像。
      • ...
  2. annotations/

    • 功能:存放Pascal VOC格式的标注文件。
    • 内容
      • 00001.xml:示例VOC标注文件。
      • 00002.xml:另一张图像的VOC标注文件。
      • ...
  3. data.yaml

    • 功能:定义数据集的类别和其他相关信息。
    • 内容
      train: transmission_line_fittings_detection_dataset/images
      val: transmission_line_fittings_detection_dataset/images
      nc: 1
      names: ['suspension clamp']  # 悬垂线夹
  4. README.md

    • 功能:数据集的详细说明文档。
    • 内容
      • 数据集的来源和用途。
      • 数据集的结构和内容。
      • 如何使用数据集进行模型训练和评估。
      • 其他注意事项和建议。
  5. model/(可选)

    • 功能:存放预训练模型文件。
    • 内容
      • transmission_line_fittings_detection_model.pt:预训练的模型文件(如果有的话)。
数据集统计
  • 总图像数量:约1600张
  • 类别:1类
  • 类别列表
    • suspension clamp(悬垂线夹)
使用说明
  • 环境准备:确保安装了常用的深度学习库,例如torchtorchvisionnumpy等。
  • 数据集路径设置:将数据集解压到项目目录下,并确保路径正确。
  • 加载预训练模型:如果有预训练模型,可以直接加载并对其进行微调或直接使用。
  • 数据增强:可以通过随机翻转、旋转等方法增加数据多样性,提高模型鲁棒性。
  • 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
  • 硬件要求:建议使用GPU进行训练和推理,以加快处理速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
  • 类别平衡:虽然数据集中只有一种类别,但在实际应用中可能需要进一步检查并处理样本不平衡问题,例如通过过采样或欠采样方法。

关键代码示例

以下是一个使用PyTorch和torchvision库进行输电线路悬垂线夹检测的示例代码。我们将使用预训练的Faster R-CNN模型,并对其进行微调以适应我们的数据集。

import torch
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.transforms import functional as F
from torch.utils.data import DataLoader, Dataset
from PIL import Image
import os
import xml.etree.ElementTree as ET# 自定义数据集类
class TransmissionLineFittingsDataset(Dataset):def __init__(self, root, transforms=None):self.root = rootself.transforms = transformsself.imgs = list(sorted(os.listdir(os.path.join(root, "images"))))self.annotations = list(sorted(os.listdir(os.path.join(root, "annotations"))))def __getitem__(self, idx):img_path = os.path.join(self.root, "images", self.imgs[idx])annotation_path = os.path.join(self.root, "annotations", self.annotations[idx])img = Image.open(img_path).convert("RGB")annotation_root = ET.parse(annotation_path).getroot()boxes = []labels = []for obj in annotation_root.findall('object'):xmin, ymin, xmax, ymax = [int(obj.find('bndbox').find(tag).text) for tag in ('xmin', 'ymin', 'xmax', 'ymax')]label = 1  # 悬垂线夹的类别标签boxes.append([xmin, ymin, xmax, ymax])labels.append(label)boxes = torch.as_tensor(boxes, dtype=torch.float32)labels = torch.as_tensor(labels, dtype=torch.int64)target = {}target["boxes"] = boxestarget["labels"] = labelstarget["image_id"] = torch.tensor([idx])if self.transforms is not None:img, target = self.transforms(img, target)return F.to_tensor(img), targetdef __len__(self):return len(self.imgs)# 数据预处理
def get_transform(train):transforms = []if train:transforms.append(torchvision.transforms.RandomHorizontalFlip(0.5))return torchvision.transforms.Compose(transforms)# 加载数据集
dataset = TransmissionLineFittingsDataset(root='transmission_line_fittings_detection_dataset', transforms=get_transform(train=True))
dataset_test = TransmissionLineFittingsDataset(root='transmission_line_fittings_detection_dataset', transforms=get_transform(train=False))indices = torch.randperm(len(dataset)).tolist()
dataset = torch.utils.data.Subset(dataset, indices[:-160])
dataset_test = torch.utils.data.Subset(dataset_test, indices[-160:])data_loader = DataLoader(dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=lambda x: tuple(zip(*x)))
data_loader_test = DataLoader(dataset_test, batch_size=1, shuffle=False, num_workers=4, collate_fn=lambda x: tuple(zip(*x)))# 定义模型
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
num_classes = 2  # 1类目标 + 背景
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# 定义优化器
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)# 训练模型
num_epochs = 10
for epoch in range(num_epochs):model.train()for images, targets in data_loader:images = list(image.to(device) for image in images)targets = [{k: v.to(device) for k, v in t.items()} for t in targets]loss_dict = model(images, targets)losses = sum(loss for loss in loss_dict.values())optimizer.zero_grad()losses.backward()optimizer.step()print(f'Epoch {epoch+1}/{num_epochs}, Loss: {losses.item()}')# 验证模型model.eval()with torch.no_grad():for images, targets in data_loader_test:images = list(image.to(device) for image in images)targets = [{k: v.to(device) for k, v in t.items()} for t in targets]outputs = model(images)# 保存模型
torch.save(model.state_dict(), 'transmission_line_fittings_detection_model.pth')

注意事项

  • 数据格式:确保输入的数据格式正确,特别是图像文件和标注文件的格式。
  • 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
  • 硬件要求:建议使用GPU进行训练和推理,以加快处理速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
  • 数据增强:可以通过数据增强技术(如随机翻转、旋转等)来增加模型的鲁棒性。
  • 模型选择:除了Faster R-CNN,还可以尝试其他目标检测模型,如YOLOv5、SSD等,以找到最适合当前任务的模型。
  • 类别平衡:虽然数据集中只有一种类别,但在实际应用中可能需要进一步检查并处理样本不平衡问题,例如通过过采样或欠采样方法。

通过上述步骤,你可以成功地使用这个高质量的输电线路悬垂线夹检测数据集进行模型训练和评估。该数据集不仅适用于学术研究,还可以应用于实际的电力设施维护、故障检测系统等领域,帮助提升对输电线路悬垂线夹的检测准确性和效率。希望这个数据集能帮助你更好地理解和应用最新的深度学习技术。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/440404.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在mac中通过ip连接打印机并实现双面打印

首先需要找到电脑自带的打印。添加打印机。 填写好打印机的ip地址,然后添加。 填写好ip地址后,直接添加就行 添加完打印机后其实就可以打印了。但是有些功能可能实现不了,比如说双面打印。为了实现双面打印的功能,需要再进行设置…

代码随想录算法训练营第五十四天|LeetCode42 接雨水、LeetCode84 柱状图中最大的矩形

LeetCode42 接雨水 代码随想录题目链接/文章讲解/视频讲解: 代码随想录代码随想录PDF,代码随想录网站,代码随想录百度网盘,代码随想录知识星球,代码随想录八股文PDF,代码随想录刷题路线,代码随…

GEE开发之Modis_NDWI数据分析和获取

GEE开发之Modis_NDWI数据分析和获取 0 数据介绍NDWI介绍MOD09GA介绍 1 NDWI天数据下载2 NDWI月数据下载3 NDWI年数据下载 前言:本文主要介绍Modis下的NDWI数据集的获取。归一化差异水指数 (NDWI) 对植被冠层液态水含量的变化很敏感。它来自近红外波段和第二个红外波…

PMP--冲刺题--解题--21-30

文章目录 11.风险管理--数据分析--成本效益分析--如果能够把单个项目风险的影响进行货币量化,那么就可以通过成本收益分析来确定备选风险应对策略的成本有效性。 特性要取消,要想继续做的话,就得看能不能给组织带来收益。21、 [单选] 在迭代审…

【NoSQL】portswigger NoSQL注入 labs 全解

目录 NoSQL NoSQL 数据库模型 NoSQL 注入的类型 NoSQL 语法注入 检测 MongoDB 中的语法注入 lab1:检测 NoSQL 注入 NoSQL 运算符注入 提交查询运算符 检测 MongoDB 中的运算符注入 lab2:利用 NoSQL 运算符注入绕过身份验证 利用语法注入来提取数据 MongoDB 中的数据…

Golang | Leetcode Golang题解之第446题等差数列划分II-子序列

题目: 题解: func numberOfArithmeticSlices(nums []int) (ans int) {f : make([]map[int]int, len(nums))for i, x : range nums {f[i] map[int]int{}for j, y : range nums[:i] {d : x - ycnt : f[j][d]ans cntf[i][d] cnt 1}}return }

Ubuntu 搭建 GitLab

1. 安装依赖: sudo apt update sudo apt install -y curl openssh-server ca-certificates2. 添加 GitLab 包仓库: curl https://packages.gitlab.com/install/repositories/gitlab/gitlab-ce/script.deb.sh | sudo bash3. 安装 GitLab: s…

UE5数字人制作平台使用及3D模型生成

第10章 数字人制作平台使用及3D模型生成 在数字娱乐、虚拟现实(VR)、增强现实(AR)等领域,高质量的3D模型是数字内容创作的核心。本章将引导你了解如何使用UE5(Unreal Engine 5)虚幻引擎这一强大…

多模态大语言模型(MLLM)-Blip2深度解读

前言 Blip2是一个多模态大语言模型,因其提出时间较早(2023年),且效果较好,很快成为一个标杆性工作。Blip2中提出的Q-former也成为衔接多模态和文本的重要桥梁。 Blip2发表时间是2023年,现在引用已经3288了…

【AIGC】ChatGPT是如何思考的:探索CoT思维链技术的奥秘

博客主页: [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯什么是CoT思维链CoT思维链的背景与技术发展需求 💯CoT思维链的工作原理💯CoT思维链的应用领域💯CoT思维链的优势💯CoT思维…

【JavaEE】【多线程】进程与线程的概念

目录 进程系统管理进程系统操作进程进程控制块PCB关键属性cpu对进程的操作进程调度 线程线程与进程线程资源分配线程调度 线程与进程区别线程简单操作代码创建线程查看线程 进程 进程是操作系统对一个正在运行的程序的一种抽象,可以把进程看做程序的一次运行过程&a…

【EXCEL数据处理】000014 案例 EXCEL分类汇总、定位和创建组。附多个操作案例。

前言:哈喽,大家好,今天给大家分享一篇文章!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【EXCEL数据处理】000014 案例 EXCEL分类汇总、定位和创建组。附多个操…

SpringBoot MyBatis连接数据库设置了encoding=utf-8还是不能用中文来查询

properties的MySQL连接时已经指定了字符编码格式&#xff1a; url: jdbc:mysql://localhost:3306/sky_take_out?useUnicodetrue&characterEncodingutf-8使用MyBatis查询&#xff0c;带有中文参数&#xff0c;查询出的内容为空。 执行的语句为&#xff1a; <select id&…

LeetCode讲解篇之139. 单词拆分

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 我们使用一个数组记录字符串s在[0, i)区间能否使用wordDict组成 我们使用左右指针遍历字符串s的子串&#xff0c;左指针 j 为子串的左端点下标&#xff0c;右指针 i 为右端点下标的下一个 遍历过程中如果字符串s…

怎么成为年薪53万的AI产品经理?我分析了200份大厂的招聘要求

我在 BOSS 直聘搜索AI产品经理&#xff0c;筛选了公司规模在10000人以上的公司&#xff0c;清洗整理后得到 229 个岗位信息&#xff0c;分析得到如下信息&#xff1a; 按最低薪资算&#xff0c;平均年薪 40.2 万&#xff1b;取薪资范围均值&#xff0c;平均年薪 52.9 万;只有 …

(PyTorch) 深度学习框架-介绍篇

前言 在当今科技飞速发展的时代&#xff0c;人工智能尤其是深度学习领域正以惊人的速度改变着我们的世界。从图像识别、语音处理到自然语言处理&#xff0c;深度学习技术在各个领域都取得了显著的成就&#xff0c;为解决复杂的现实问题提供了强大的工具和方法。 PyTorch 是一个…

消费者Rebalance机制

优质博文&#xff1a;IT-BLOG-CN 一、消费者Rebalance机制 在Apache Kafka中&#xff0c;消费者组 Consumer Group会在以下几种情况下发生重新平衡Rebalance&#xff1a; 【1】消费者加入或离开消费者组&#xff1a; 当一个新的消费者加入消费者组或一个现有的消费者离开消费…

人机协作:科技与人类智慧的融合

随着科技的飞速发展&#xff0c;越来越多的领域开始借助人工智能&#xff08;AI&#xff09;和自动化技术来提升工作效率。人机协作&#xff08;Human-Machine Collaboration&#xff09;这一概念逐渐成为现代技术进步的核心。它不仅改变了我们的工作方式&#xff0c;也在重新定…

智能家居有哪些产品?生活中常见的人工智能有哪些?

智能家居有哪些产品? 1、智能照明设备类&#xff1a;智能开关、智能插座、灯控模块、智能空开、智能灯、无线开关。 2、家庭安防类&#xff1a;智能门锁、智能摄像机、智能猫眼、智能门铃。 3、智能传感器类&#xff1a;烟雾传感器、可燃气体传感器、水浸传感器、声光报警器…

舵机驱动详解(模拟/数字 STM32)

目录 一、介绍 二、模块原理 1.舵机驱动原理 2.引脚描述 三、程序设计 main.c文件 servo.h文件 servo.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 舵机(Servo)是在程序的控制下&#xff0c;在一定范围内连续改变输出轴角度并保持的电机系统。即舵机只支持…