基于OpenCV的实时年龄与性别识别(支持CPU和GPU)

关于深度实战社区

我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万+粉丝,拥有2篇国家级人工智能发明专利。

社区特色:深度实战算法创新

获取全部完整项目数据集、代码、视频教程,请进入官网:zzgcz.com。竞赛/论文/毕设项目辅导答疑,v:zzgcz_com

1. 项目简介

本项目旨在实现一个基于OpenCV的实时年龄与性别识别系统,使用深度学习模型进行人脸检测和特征提取,并结合预训练的性别与年龄分类模型进行推断。随着计算机视觉和深度学习技术的快速发展,自动化的人脸识别和属性分类技术得到了广泛应用,包括安防监控、智能零售、人机交互等领域。本项目的目标是通过摄像头实时捕获用户的面部图像,并预测其年龄和性别,提升交互体验或为其他应用提供数据支持。项目中使用了深度学习网络进行人脸检测,并通过OpenCV DNN模块加载预训练的Caffe模型来实现年龄与性别分类。这些模型在大型数据集上训练,能够准确预测多种年龄段(例如0-2岁、4-6岁、25-32岁等)以及性别(男性、女性)。此外,项目支持在CPU和GPU上进行推理,以满足不同的计算资源需求。在CPU设备上,系统利用OpenCV的高效DNN加速推理;在GPU设备上,则通过CUDA优化模型计算,以加速性能。本项目的实现能够广泛应用于需要快速识别用户属性的场景,具有较强的实用性和扩展性。

在这里插入图片描述

2.技术创新点摘要

  1. 集成多个预训练模型的高效应用:项目采用了预训练的深度学习模型(Caffe模型)来实现性别与年龄的识别,结合了人脸检测、性别分类和年龄预测三个任务。使用OpenCV的DNN模块对预训练的性别和年龄模型进行推理,能够有效降低开发难度并加快实现速度。此外,这些模型在大规模数据集上训练,具备较高的准确率和鲁棒性,尤其适合实时应用场景。
  2. CPU与GPU设备的自适应支持:代码中针对CPU和GPU设备进行了不同的优化处理,使得模型能够灵活地在不同计算资源下运行。对于CPU设备,OpenCV的DNN模块能够在非GPU硬件上高效推理。而对于GPU设备,代码通过CUDA支持,利用GPU加速推理过程,大幅提升了处理速度。这种对硬件的自适应支持,显著提高了系统的可移植性和运行效率,尤其适用于需要高性能推理的应用场景。
  3. 基于OpenCV的高效人脸检测:项目中使用了基于OpenCV的深度神经网络模块进行人脸检测,采用了高置信度的检测机制来确保检测到的人脸位置准确无误。代码通过对检测结果的置信度进行过滤,避免了低置信度的人脸检测误报,从而提升了识别的准确性。此外,在检测到人脸后,程序为每个检测到的人脸进行精细化裁剪,为后续的性别与年龄分类提供了高质量的输入数据。
  4. 实时视频处理与多任务并行:代码不仅能够处理静态图像,还能通过摄像头流的方式实时捕捉帧并进行连续的识别处理。每一帧视频都经过人脸检测、裁剪、年龄和性别分类等多重步骤,确保系统在实时场景中的流畅性和准确性。这种多任务并行处理的架构为后续的扩展提供了良好的基础。

3. 数据集与预处理

本项目的核心使用了预训练的Caffe模型进行年龄和性别识别,模型的训练数据集来源于广泛的人脸识别数据集,如IMDB-WIKI数据集和Adience数据集。这些数据集包含了大量标注好的人脸图像,涵盖了不同性别、年龄段、种族以及多样的拍摄角度和光照条件。IMDB-WIKI数据集是目前最大的公开人脸年龄数据集,包含超过50万张图像及其对应的年龄标签。Adience数据集则专注于年龄分段(Age Group)和性别预测,具备较高的分类精度,是学术界和工业界常用的测试集。

在预处理阶段,项目首先对输入图像或视频流进行人脸检测。检测后的人脸图像会被裁剪到指定的尺寸(227x227),确保模型输入图像的标准化。之后,代码采用了OpenCV的blobFromImage函数进行预处理操作,包括将图像从RGB转换为BGR格式,进行像素值的均值减法(使用预定义的均值值:78.4、87.8、114.9)以及尺寸调整,生成适合深度学习模型输入的blob数据。模型预期输入的图像通道顺序与原始图像格式不同,因此进行了通道变换,确保在推理时不会因通道错乱而导致识别精度下降。

此外,该项目对输入图像未使用复杂的数据增强(如旋转、平移、镜像等),主要是因为模型在大规模数据集上已具备较强的泛化能力。然而,项目中的每一帧图像都会进行逐帧裁剪和检测,确保在不同姿势和光照条件下的人脸都能被准确识别。

4. 模型架构

1. 模型结构逻辑

本项目使用了基于Caffe框架预训练的深度学习模型进行年龄和性别识别,模型主要包括三部分:人脸检测模型、年龄分类模型和性别分类模型。以下是每个模型的架构和功能:

(1) 人脸检测模型

该模型使用了OpenCV提供的基于深度学习的ResNet架构进行人脸检测,网络结构包含多层卷积、池化和全连接层,核心是用来识别图像中存在的人脸区域。输入图像首先经过卷积层(Convolutional Layer),计算公式为:

Z = W ⋅ X + b Z = W \cdot X + b Z=WX+b

其中,W 表示卷积核权重矩阵,X 表示输入图像,b 是偏置项,Z 是经过卷积层后的特征图。之后,通过多层卷积和池化(Pooling)层逐步提取图像特征,并通过全连接层将特征映射到二维坐标空间(Bounding Box的坐标)。该模型输出的格式为:每个人脸的置信度分数以及对应的矩形框(x1, y1, x2, y2)。

(2) 年龄识别模型

年龄识别模型是基于Caffe框架的轻量级卷积神经网络(CNN),网络输入为经过归一化的面部图像,输出为8个类别的概率分布(对应不同的年龄区间)。该模型的主要结构为:

  • 输入层:接收大小为227x227的面部图像。
  • 卷积层1:提取低层次特征(如边缘和纹理),卷积操作公式同上。
  • 池化层(Pooling Layer) :进行降维,减少计算复杂度。
  • 全连接层(Fully Connected Layer) :将特征向量映射到年龄分布概率空间。输出的概率分布计算公式为:

P ( y = j ∣ x ) = exp ⁡ ( W j ⋅ x + b j ) ∑ k = 1 K exp ⁡ ( W k ⋅ x + b k ) P(y=j|x) = \frac{\exp(W_j \cdot x + b_j)}{\sum_{k=1}^{K} \exp(W_k \cdot x + b_k)} P(y=jx)=k=1Kexp(Wkx+bk)exp(Wjx+bj)

其中,Wj和 bj是第j类别的权重和偏置项,P(y=j∣x) 表示输入图像 x 属于第 j 个年龄区间的概率。

(3) 性别识别模型

性别识别模型结构与年龄识别模型类似,但输出为两个类别(男性和女性)。输入的面部图像经过卷积和池化层后,映射到两个输出类别。性别分类采用Softmax层进行概率估计:

P ( y = male ∣ x ) = exp ⁡ ( W male ⋅ x + b male ) exp ⁡ ( W male ⋅ x + b male ) + exp ⁡ ( W female ⋅ x + b female ) P(y=\text{male}|x) = \frac{\exp(W_{\text{male}} \cdot x + b_{\text{male}})}{\exp(W_{\text{male}} \cdot x + b_{\text{male}}) + \exp(W_{\text{female}} \cdot x + b_{\text{female}})} P(y=malex)=exp(Wmalex+bmale)+exp(Wfemalex+bfemale)exp(Wmalex+bmale)

同样,P(y=male∣x)表示输入图像被识别为男性的概率,输出最大概率的类别即为模型的性别预测结果。

2. 模型整体训练流程

虽然项目中使用了预训练模型,但在训练这些模型时通常经历了以下几个步骤:

  1. 数据准备与预处理:从IMDB-WIKI或Adience数据集获取人脸图像,进行裁剪、尺寸缩放、颜色归一化处理。将图像标签进行One-Hot编码(性别二分类,年龄为多类别分类)。

  2. 模型架构设计与初始化:采用轻量级CNN模型,初始化权重参数(使用Xavier或He初始化方法)。

  3. 损失函数选择

    1. 年龄识别:使用交叉熵损失函数(Cross-Entropy Loss),计算类别概率分布与真实标签之间的误差。
  4. L age = − ∑ i = 1 N ∑ j = 1 K y i j ⋅ log ⁡ ( P i j ) L_{\text{age}} = -\sum_{i=1}^{N} \sum_{j=1}^{K} y_{ij} \cdot \log(P_{ij}) Lage=i=1Nj=1Kyijlog(Pij)其中,yij 表示第 i 张图像属于第 j 类别的标签值(0或1),Pij 为模型预测的概率。

    1. 性别识别:采用二分类交叉熵损失,计算性别的分类误差。
  5. 优化器选择:采用Adam或SGD优化器进行反向传播,调整网络权重。学习率初始设定为0.001,并在训练过程中动态衰减。

  6. 训练过程:通过前向传播计算损失值,再进行反向传播更新权重。每次迭代时计算训练集的准确率,并记录验证集的性能,防止过拟合。

  7. 模型评估指标

    1. 准确率(Accuracy) :用于衡量模型对性别和年龄预测的整体性能。
    2. 混淆矩阵(Confusion Matrix) :衡量每个类别的分类效果。
    3. 平均绝对误差(Mean Absolute Error, MAE) :用于评估年龄预测的连续误差。

通过这些流程,模型能够逐步提升在性别和年龄分类任务中的性能,确保在不同应用场景下均能保持较高的准确性。

5. 核心代码详细讲解

1. 数据预处理与人脸检测
def getFaceBox(net, frame, conf_threshold=0.7):frameOpencvDnn = frame.copy()frameHeight = frameOpencvDnn.shape[0]frameWidth = frameOpencvDnn.shape[1]blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
  • def getFaceBox(net, frame, conf_threshold=0.7): 定义了一个名为 getFaceBox 的函数,用于通过预训练的人脸检测网络 (net) 从输入帧图像 (frame) 中检测人脸。conf_threshold 参数指定了用于过滤低置信度检测框的阈值(默认为0.7)。

  • frameOpencvDnn = frame.copy(): 复制输入的帧图像,确保不会在原始图像上进行操作。

  • frameHeight = frameOpencvDnn.shape[0] & frameWidth = frameOpencvDnn.shape[1]: 分别获取输入图像的高度和宽度,用于后续计算边界框坐标。

  • blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False):

    • 使用 cv.dnn.blobFromImage 函数将输入图像转换为OpenCV DNN(深度神经网络)模块可以处理的格式。这个函数的作用是进行图像的预处理操作,将图像归一化,并调整输入数据格式。
    • 1.0 是缩放比例(scale factor),表示不缩放。
    • (300, 300) 是目标输入图像的尺寸,即将图像调整到 300x300 大小。
    • [104, 117, 123] 是各个通道(BGR)所需减去的均值,用来标准化输入数据。
    • True 参数表示是否将颜色通道从 RGB 转换为 BGR 格式(OpenCV 的标准格式)。
    • False 表示不进行图像裁剪(crop)。
2. 模型输入与检测结果的处理

net.setInput(blob) ``detections = net.forward()

  • net.setInput(blob): 将预处理后的输入图像 blob 送入深度神经网络 net 中,以便进行前向传播(forward pass)计算。
  • detections = net.forward(): 调用网络的 forward 方法,获取网络的检测结果。detections 是一个包含检测到的所有边界框、类别置信度等信息的矩阵。
3. 边界框坐标解析与过滤
bboxes = []
for i in range(detections.shape[2]):confidence = detections[0, 0, i, 2]if confidence > conf_threshold:x1 = int(detections[0, 0, i, 3] * frameWidth)y1 = int(detections[0, 0, i, 4] * frameHeight)x2 = int(detections[0, 0, i, 5] * frameWidth)y2 = int(detections[0, 0, i, 6] * frameHeight)bboxes.append([x1, y1, x2, y2])
  • bboxes = []: 初始化一个空列表,用于存储所有检测到的边界框。
  • for i in range(detections.shape[2]): 遍历检测结果中的每个检测项。detections.shape[2] 表示检测到的目标数量。
  • confidence = detections[0, 0, i, 2]: 获取当前检测框的置信度分数(confidence score)。detections[0, 0, i, 2] 表示第 i 个检测结果的置信度。
  • if confidence > conf_threshold: 仅保留置信度分数大于阈值的检测结果(过滤掉置信度较低的检测框)。
  • x1 = int(detections[0, 0, i, 3] * frameWidth)y1 = int(detections[0, 0, i, 4] * frameHeight): 计算左上角坐标 (x1, y1) 的像素位置,原始检测结果是比例值,需要乘以图像的宽度和高度来获得实际坐标。
  • x2 = int(detections[0, 0, i, 5] * frameWidth)y2 = int(detections[0, 0, i, 6] * frameHeight): 计算右下角坐标 (x2, y2)。
  • bboxes.append([x1, y1, x2, y2]): 将边界框的坐标信息(x1, y1, x2, y2)加入 bboxes 列表中,供后续绘制与处理。
4. 性别和年龄的预测
face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1), max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]
blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
  • face = frame[...: 裁剪出人脸区域。使用 bbox 中保存的边界框坐标,对原始图像 frame 进行裁剪。maxmin 函数用于防止越界。
  • blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False): 对裁剪后的人脸图像进行预处理,生成大小为 227x227 的 blob 输入数据。MODEL_MEAN_VALUES 是(78.4263377603, 87.7689143744, 114.895847746),即模型的预设均值,用于标准化输入数据。
  • genderNet.setInput(blob): 将人脸数据 blob 输入到性别分类网络 genderNet 中。
  • genderPreds = genderNet.forward(): 执行前向传播,输出性别的预测结果。genderPreds 是一个大小为 [1, 2] 的向量,表示预测为男性或女性的概率。
  • gender = genderList[genderPreds[0].argmax()]: 使用 argmax() 方法获取预测概率最大的类别索引,并转换为性别字符串(“Male” 或 “Female”)。
5. 结果显示
cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
cv.imshow("Age Gender Demo", frameFace)
  • cv.putText(frameFace, label, (bbox[0], bbox[1]-10), ...): 在检测到的人脸上方显示性别与年龄标签(label)。(bbox[0], bbox[1]-10) 表示文本显示的起始坐标。cv.FONT_HERSHEY_SIMPLEX 是字体类型,0.8 为字体大小,(0, 255, 255) 是黄色字体颜色,2 是文本粗细,cv.LINE_AA 是反锯齿线条类型。
  • cv.imshow("Age Gender Demo", frameFace): 在OpenCV窗口中显示处理后的视频帧。

6. 模型优缺点评价

模型优点

  1. 高效的多任务集成:项目通过结合人脸检测、性别分类和年龄预测模型,能够在一个流程中实现多种识别任务,节省了计算开销,并确保了任务的高效性。
  2. 实时性较好:该项目使用了OpenCV的DNN模块,能够在CPU和GPU上灵活切换。通过CUDA优化实现了GPU加速,使模型可以在实时场景中进行流畅的视频推理,提升了实际应用效果。
  3. 预训练模型泛化能力强:使用IMDB-WIKI和Adience等大规模数据集训练的模型,具有良好的泛化能力,能够在不同场景、不同光照条件下准确预测性别和年龄。

模型缺点

  1. 精度有限:模型使用了轻量级的深度学习网络,虽然适合实时性,但在复杂的年龄段(如中年和老年)分类上存在较大的误差。此外,性别分类可能受光照、遮挡和面部表情的影响而不稳定。
  2. 鲁棒性不足:该模型在处理非标准人脸(如侧脸、低分辨率、过度曝光)时可能存在较高的误检率和漏检率。
  3. 模型规模较小:模型的复杂度较低,可能无法充分提取深层次的图像特征,从而影响其在不同人种、特殊年龄段上的表现。

可能的模型改进方向

  1. 引入更深的神经网络架构:可以尝试使用ResNet、MobileNet等更深或更复杂的网络结构,以提升模型的特征提取能力,从而提升预测精度。
  2. 增加数据增强策略:在训练数据上引入更多的数据增强方法,如随机旋转、水平翻转、亮度调节等,增强模型对各种非理想条件的适应性。
  3. 超参数优化:可以通过调整学习率、权重初始化、优化器选择等方法来改善模型的收敛速度与最终精度。
    通过这些优化,可以提升模型的准确率和鲁棒性,使其更好地应对复杂的实际场景。

↓↓↓更多热门推荐:
LSTM预测未来30天销售额
基于小波变换与稀疏表示优化的RIE数据深度学习预测模型

全部项目数据集、代码、教程进入官网zzgcz.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/440592.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言文件操作(上)(27)

文章目录 前言一、为什么要用文件?二、什么是文件?程序文件数据文件文件名文件类型文件缓冲区文件指针 三、流流的概念标准流 总结 前言 C语言可以直接操作文件,如果你是第一次听说这个特性,可能会眼前一亮,感到惊奇  …

四.网络层(上)

目录 4.1网络层功能概述 4.2 SDN基本概念 4.3 路由算法与路由协议 4.3.1什么是路由协议? 4.3.2什么是路由算法? 4.3.3路由算法分类 (1)静态路由算法 (2)动态路由算法 ①全局性 OSPF协议与链路状态算法 ②分散性 RIP协议与距离向量算法 4.3.…

Python手绘五星红旗,庆75周年

环境 pip install matplotlib pip install numpy 代码 import matplotlib.pyplot as plt import numpy as np# 中国国旗的标准尺寸比例是 3:2 width, height 300, 200 # 这里可以调整为任何满足3:2比例的尺寸# 创建一个新图形 fig, ax plt.subplots(figsize(width/100, h…

快速熟悉Nginx

一、Nginx是什么? ‌Nginx是一款高性能、轻量级的Web服务器和反向代理服务器。‌ ‌特点‌:Nginx采用事件驱动的异步非阻塞处理框架,内存占用少,并发能力强,资源消耗低。‌功能‌:Nginx主要用作静态文件服…

JS 介绍/书写位置/输入输出语法

目录 1. JS 介绍 1.1 JS 是什么 1.2 JS 的作用 1.3 JS 的组成 2. JS 书写位置 2.1 内部 JS 2.2 外部 JS 2.3 内联 JS 3. JS 注释和结束符 4. JS 输入输出语法 4.1 输入语法 4.2 输入语句 4.3 执行顺序 5. 字面量 1. JS 介绍 1.1 JS 是什么 1.2 JS 的作用 1.3 JS …

网 络 安 全

网络安全是指保护网络系统及其所存储或传输的数据免遭未经授权访问、使用、揭露、破坏、修改或破坏的实践和技术措施。网络安全涉及多个方面,包括但不限于以下几个方面: 1. 数据保护:确保数据在传输和存储过程中的完整性和保密性,…

Python3 爬虫 中间人爬虫

中间人(Man-in-the-Middle,MITM)攻击是指攻击者与通信的两端分别创建独立的联系,并交换其所收到的数据,使通信的两端认为其正在通过一个私密的连接与对方直接对话,但事实上整个会话都被攻击者完全控制。在中…

macOS Sequoia 15.0.1 (24A348) 正式版 ISO、IPSW、PKG 下载

macOS Sequoia 15.0.1 (24A348) 正式版 ISO、IPSW、PKG 下载 iPhone 镜像、Safari 浏览器重大更新和 Apple Intelligence 等众多全新功能令 Mac 使用体验再升级 请访问原文链接:https://sysin.org/blog/macOS-Sequoia/ 查看最新版。原创作品,转载请保留…

vsomeip用到的socket

概述: ​ vsomeip用到的socket的代码全部都在implementation\endpoints目录下面,主要分布在下面六个endpoint类中: local_client_endpoint_impl // 本地客户端socket(UDS Socket或者127.0.0.1的socket)local_server…

解决ros2 rviz Fixed Frame No TF data问题

新建一个终端,然后输入 :map后的数字可以任意,100也可以。注意map与框架名称一致。 rosrun tf2_ros static_transform_publisher 0.0 0.0 0.0 0.0 0.0 0.0 map 5

(作业)第三期书生·浦语大模型实战营(十一卷王场)--书生入门岛通关第1关Linux 基础知识

关卡任务 闯关任务需要在关键步骤中截图: 任务描述 完成所需时间 闯关任务 完成SSH连接与端口映射并运行hello_world.py 10min 可选任务 1 将Linux基础命令在开发机上完成一遍 10min 可选任务 2 使用 VSCODE 远程连接开发机并创建一个conda环境 10min 可选任务 3 创…

`git restore` 和 `git checkout` 用于丢弃工作区的改动, `git switch` 和 `git checkout` 用来切换分支

git restore 和 git checkout 都可以用于丢弃工作区的改动 但它们有一些区别,尤其是在 Git 2.23 引入了新的命令后。 主要区别 git checkout 是一个多用途命令: 它用于切换分支。它还可以用于恢复工作区中特定文件的更改。由于功能过于复杂&#xff0c…

html中的文本标签(含标签的实现案例)

目录 1.标题标签 2.标题标签的align属性 3.段落标签 4.水平线标签hr 5.换行标签br 6.文本样式标签font ​编辑7.文本格式化标签 8.文本语义标签 1)时间time标签 2)文本高亮Mark标签 3)cite标签 9.特殊字符标签 10.图像标签img 附录&#xff…

安卓使用memtester进行内存压力测试

memteser简介 memtester 是一个用于测试内存可靠性的工具。 它可以对计算机的内存进行压力测试,以检测内存中的错误,例如位翻转、随机存取错误等。memtester 可以在不同的操作系统上运行,并且可以针对不同大小的内存进行测试。 下载源码 m…

【Python】Python知识总结浅析

Python是一种高级编程语言,由Guido van Rossum于1991年首次发布。它以简洁的语法和强大的功能著称,适用于多种应用场景,包括Web开发、数据分析、人工智能、自动化脚本等。 易于学习和使用:Python的语法简洁明了,适合初…

【Windows】在任务管理器中隐藏进程

在此前的一篇,我们已经介绍过了注入Dll 阻止任务管理器结束进程 -- Win 10/11。本篇利用 hook NtQuerySystemInformation 并进行断链的方法实现进程隐身,实测支持 taskmgr.exe 的任意多进程隐身。 任务管理器 代码: // dllmain.cpp : 定义 …

RabbitMQ篇(基本介绍)

目录 一、简介 二、作用 三、AMQP协议 1. 简介 2. 核心概念 四、工作原理 五、工作模式 1. 普通模式 2. Worker模式 3. PubSub模式 4. Rounting模式 5. Topic模式 6. RPC模式 7. Publisher Confirms模式 六、基本结构 七、常见五个角色 一、简介 RabbitMQ 是一…

828华为云征文|华为云Flexus云服务器X实例部署 即时通讯IM聊天交友软件——高性能服务器实现120W并发连接

营运版的即时通讯IM聊天交友系统:特点可发红包,可添加多条链接到用户网站和应用,安卓苹果APPPC端H5四合一 后端开发语言:PHP, 前端开发语言:uniapp混合开发。 集安卓苹果APPPC端H5四合一APP源码&#xff0…

推理攻击-Python案例

1、本文通过推理攻击的方式来估计训练集中每个类别的样本数量、某样本是否在训练集中。 2、一种简单的实现方法:用模型对训练数据标签进行拟合,拟合结果即推理为训练集中的情况。 3、了解这些案例可以帮助我们更好的保护数据隐私。 推理攻击(…

旋转花键高效运行关键之一

旋转花键是一种广泛应用于机械设备中的重要部件,具有传递扭矩、承受载荷和维持运动精度等功能,而旋转花键润滑脂则是确保其正常运作的关键因素之一。事实上,旋转花键润滑油的选择是一个综合性的过程,需要考虑多个因素以确保设备的…