YOLO 二元分类器

YOLO 二元分类器

在评估二元分类器性能时,TP、FP、TN和FN是四个核心指标,它们分别代表真阳性、假阳性、真阴性和假阴性。以下是这些指标的定义、计算方法以及在实际应用中的意义:

定义

  • TP(真阳性):模型正确预测为正类且实际为正类的样本数量。
  • FP(假阳性):模型错误预测为正类但实际为负类的样本数量。
  • TN(真阴性):模型正确预测为负类且实际为负类的样本数量。
  • FN(假阴性):模型错误预测为负类但实际为正类的样本数量。

计算方法

  • 准确率(Accuracy)Accuracy = (TP + TN) / (TP + FP + FN + TN)
  • 精确率(Precision)Precision = TP / (TP + FP)
  • 召回率(Recall)Recall = TP / (TP + FN)
  • F1分数F1 Score = 2 * Precision * Recall / (Precision + Recall)

实际应用中的意义

  • TP:衡量模型正确识别正例的能力。
  • FP:衡量模型产生误报的情况,即错误地将负例预测为正例。
  • TN:衡量模型正确识别负例的能力。
  • FN:衡量模型漏报正例的情况,即错误地将正例预测为负例。2

评估指标的选择

  • 准确率:适用于类别分布均衡的场景,但在类别不平衡时可能会给出误导性的结果。
  • 精确率:适用于关注假阳性成本较高的场景,如垃圾邮件检测。
  • 召回率:适用于关注假阴性成本较高的场景,如疾病筛查。
  • F1分数:适用于类别不平衡的场景,因为它综合考虑了精确率和召回率。2

实际应用案例

  • 垃圾短信分类器:精确率衡量被分类为垃圾短信的信息实际上为垃圾短信的比例,召回率衡量垃圾信息被正确分类的比例。8

通过上述分析,我们可以看到TP、FP、TN和FN在评估二元分类器性能时的重要性,以及如何选择合适的评估指标来反映模型在不同应用场景下的表现。

常用的评估指标:

交并比(IoU)
交并比(IoU)是预测框与真实框的重叠程度,用于评估检测框的准确性。IoU 的计算公式为预测框与真实框的交集面积除以它们的并集面积。IoU 的值介于 0 到 1 之间,值越高表示两个框的重合程度越好。

准确率(Precision)
准确率是指所有预测为正例的样本中,真正为正例的比例。在物体检测中,准确率反映了模型预测为正例的样本中,实际为正例的比例。

召回率(Recall)
召回率是指所有实际为正例的样本中,被模型正确预测为正例的比例。召回率衡量了模型识别正例的能力,即模型能够找出多少实际存在的正例。

平均精度(Average Precision, AP)
AP 是衡量模型在每个类别上的性能的指标,通过计算不同召回率下的准确率的平均值得到。AP 考虑了模型在不同召回率下的性能,能够更全面地反映模型的性能。

mAP(Mean Average Precision)
mAP 是多个类别的 AP 的平均值,用于评估模型在所有类别上的整体性能。mAP 能够提供一个综合的性能指标,帮助选择最佳模型。

检测速度
检测速度通常以每秒处理的图像数量(FPS)来衡量,是评估模型处理能力的重要指标。对于实时应用,模型的检测速度至关重要。

混淆矩阵(Confusion Matrix)
混淆矩阵是一个表格,用于描述模型预测结果与真实标签之间的关系。在物体检测中,混淆矩阵可以帮助我们了解模型在不同类别上的性能。

非极大值抑制(NMS)
非极大值抑制是一种用于消除高度重叠边界框的技术,通过保留得分最高的框来提高检测的准确性。

P-R 曲线
P-R 曲线是准确率与召回率之间的关系曲线,用于评估模型在不同召回率下的准确率。P-R 曲线下的面积即为 AP 值。

ROC 曲线
ROC 曲线是真阳性率(TPR)与假阳性率(FPR)之间的关系曲线,用于评估模型的分类性能。ROC 曲线下的面积即为 AUC 值。

这些评估指标共同构成了物体检测性能评估的体系,帮助研究人员、工程师和用户全面了解模型的性能,并选择最适合特定需求的模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/442513.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式 c 内存堆栈增长方向往低地址方向好处

如下是堆和栈内存空间使用方式有如下好处: 1、stack从高地址向低地址扩展,这样栈空间的起始位置就能确定下来;如果反向,则要考虑这个起点从哪里合适,要确定堆的大小。 2、可以共用中间部分区域空间,最大化…

kafka-windows集群部署

kafka-windows集群部署目录 文章目录 kafka-windows集群部署目录前言一、复制出来四个kafka文件夹二、修改集群每个kafka的配置文件四、启动zookeeper,kafka集群 前言 部署本文步骤可以先阅读这一篇博客,这篇是关于单机kafka部署测试的。本文用到的文件…

Linux驱动学习——内核编译

1、从官网下载适合板子的Linux内核版本 选择什么版本的内核需要根据所使用的硬件平台而定,最好使用硬件厂商推荐使用的版本 https://www.kernel.org/pub/linux/kernel/ 2、将压缩包复制到Ubuntu内进行解压 sudo tar -xvf linux-2.6.32.2-mini2440-20150709.tgz 然…

职场上的人情世故,你知多少?这五点一定要了解

职场是一个由人组成的复杂社交网络,人情世故在其中起着至关重要的作用。良好的人际关系可以帮助我们更好地融入团队,提升工作效率,甚至影响职业发展。在职场中,我们需要了解一些关键要素,以更好地处理人际关系&#xf…

前端练习小项目 —— 让图片变得更 “色”

前言:相信读者在学习完了HTML、CSS和JavaScript之后已经想要迫不及待的想找一个小型的项目来练练手,那么这篇文章就正好能满足你的 “需求”。 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨✨想要了解更多内容可以访问我的主页秋刀鱼不做梦-CSDN博客 在开始学习…

详解JavaScript中函数式编程

函数式编程 JS并非函数式编程语言,但可以应用函数式编程技术,这种风格很多语言都用,例如Java. 使用函数处理数组 假设有一个数组,数组元素都是数字,我们想要计算这些元素的平均值和标准差。使用非函数式编程风格的话…

微信小程序python+uniapp毕业论文选题系统设计与实现 lj141

目录 项目介绍具体实现截图开发者工具介绍技术路线性能/安全/负载方面开发语言以及框架介绍python-flask核心代码部分展示python-django核心代码部分展示详细视频演示源码获取 项目介绍 考虑到实际生活中在毕业论文选题管理方面的需要以及对该系统认真的分析,将小程序权限按管…

LabVIEW回转支承间隙自动化检测系统

开发了一种基于LabVIEW软件的回转支承间隙检测系统,通过高精度传感器和数据采集卡,自动化、高效地测量回转支承的轴向间隙和径向间隙,提高了检测精度和生产质量。以下是对系统的详细描述与应用案例分析,希望能为有类似需求的开发者…

linux如何与网络时间对齐(雪花算法ID重复)

文章目录 前言一、可能引发什么问题?二、调整步骤1.查看当前系统时间2.修改为中国时区3.同步网络时间4. 雪花id重复 总结 前言 linux服务器是部署服务的不二之选,有个小问题不可忽略: 会发现默认的服务器时间并非中国时区,时间也是相差八小时,中国时区…

踩坑NVTX

最开始在 【简说】NVTX Nsight Nvidia性能分析利器 看到NVTX的时候,我觉得这是一个好东西啊,可以详细说明每一段时间对应的是哪一段程序。 看了一下github,他的文章已经过时,现在已经不需要链接动态库了,直接includ…

2024_10_8 系统进展

改进位置 发现是label_api里藏了我需要改进的东西 settings.py 数据库 我这边电脑上使用的是windows 192 vue.config.js 陈家强是这样设置的 module.exports {publicPath: process.env.NODE_ENV production? /: /,assetsDir: static,// css: {// extract: false// },…

问:LINUXWINDOWS线程CPU时间如何排序?

Linux 在Linux上,你可以使用ps命令结合sort命令来查看和排序进程或线程的CPU使用时间。 查看进程的CPU使用时间并按时间排序 使用ps命令的-o选项可以自定义输出格式,-e选项表示显示所有进程,--sort选项用于排序。 ps -e -o pid,tid,comm,…

使用YOLO11实例分割模型进行人物分割【附完整源码】

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…

D31【python 接口自动化学习】- python基础之输入输出与文件操作

day31 文件的打开 学习日期:20241008 学习目标:输入输出与文件操作﹣-43 常见常新:文件的打开 学习笔记: 文件的概念 使用open()函数打开文件 文件路径处理 文件打开模式 总结 文件操作包括:打开&#…

VM虚拟机安装 CentOS 7.6 部署宝塔面板实操

一、centos下载 进入centos官网下载页面,选择7.6版本,依次点击 tree-》isos-》x86_64/-》CentOS-7-x86_64-DVD-1810.iso 进行下载。 centos官网下载页面: https://wiki.centos.org/Download.html1、打开下载页面 二、配置CentOS 7的网络 1、…

秋季猫咪掉毛严重怎么办?宠物空气净化器到底有没有用?

告别炎热的夏天,秋意随着家里猫咪新一轮的掉毛一起到来。我家两只布偶齐齐发力,疯狂掉毛,家里每个角落无一幸免。衣服上、地板上,肉眼可见家里的毛发量在不断增多,又陷入了日复一日的清理大战。除此之外,对…

『网络游戏』Tips弹窗队列【10】

修改脚本:DynamicWnd.cs 修改脚本:GameRoot.cs 运行项目 - Tips提示消息按顺序依次弹出显示 修改代码:GameRoot.cs 修改代码:LoginSys.cs 运行项目 设置初始化函数 将CreateWnd设置为隐藏 运行项目 本章结束

【C++ 11】for 基于范围的循环

文章目录 【 1. 基本用法 】【 2. for 新格式的应用 】2.1 for 遍历字符串2.2 for 遍历列表2.3 for 遍历的同时修改元素 问题背景 C 11标准之前(C 98/03 标准),如果要用 for 循环语句遍历一个数组或者容器,只能套用如下结构&#…

k8s 中的金丝雀发布(灰度发布)

目录 1 什么是金丝雀发布 2 Canary 发布方式 3 Canary 两种发布方式实操 3.1 准备工作 3.1.1 将 nginx 命名两个版本 v1 与 v2 3.1.2 暴露端口并指定微服务类型 3.1.3 进入 pod 修改默认发布文件 3.1.4 测试 service 是否正常 3.2 基于权重的灰度发布 3.2.1 创建 Igress 资源类…

macOS编译和运行prometheus2.54

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文详述了在macOS(M2芯片)上编译和运行prometheus2.54版本的过程,以及安装node_exporter和grafana并使用prometheus指标进行展示 本地…