使用YOLO11实例分割模型进行人物分割【附完整源码】

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【基于深度学习的太阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

  • 引言
  • 1.安装Ultralytics库
  • 2.读取测试图像
  • 3.加载模型并生成推理结果
  • 4.可视化人员分割掩码
  • 完整源码

引言

实例分割是检测和隔离图像中单个对象的关键技术,YOLO 11是执行此任务的最佳模型之一。

在本文中,您将学习如何使用YOLO 11分割模型来有效地分割图像中的人物。

我们将涵盖从设置Python环境和安装必要的库到测试图像和可视化分割结果的所有内容。

在本教程结束时,您将清楚地了解如何应用YOLO 11进行准确的人员分割。
实现效果如下:

在这里插入图片描述

1.安装Ultralytics库

在我们激活的虚拟环境中,我们需要安装ultralytics库,这将允许我们使用YOLO 11实例分割模型。

运行以下命令在您的环境中安装库:

pip install ultralytics

2.读取测试图像

读取一张测试用的图片,如下:

在这里插入图片描述

.py文件中,添加以下代码以下载镜像:

import cv2# Load the input image using OpenCV
image = cv2.imread('test.jpg')

3.加载模型并生成推理结果

下一步是加载我们的分割模型,并在测试图像上运行推理。在本教程中,我们将使用yolo11n-seg.pt模型,但您可以使用Ultralytics YOLO 11文档中的任何模型。

一旦我们的模型被加载,我们就使用results = model(filename)对测试图像进行推理,然后创建一个空掩码进行分割。

from ultralytics import YOLO
import numpy as np# Load the model
model = YOLO("yolo11n-seg.pt")  # load an official YOLO model# Predict with the model
results = model(filename)  # predict on an image# Create an empty mask for segmentation
segmentation_mask = np.zeros_like(image, dtype=np.uint8)

4.可视化人员分割掩码

最后一步是可视化由我们的模型生成的分割掩码。YOLO11模型支持同时分割多个类别,如人,自行车和汽车等。

由于我们只对person类感兴趣,它的类标签为0,因此我们只会使用这个类标签来可视化掩码。

在下面的代码中,我们对结果进行了过滤,并过滤了人物面具。然后,我们将遮罩覆盖在图像上以实现清晰的可视化,然后保存并使用matplotlib显示结果。

# Iterate over the results
for i, r in enumerate(results):# Iterate through the detected masksfor j, mask in enumerate(r.masks.xy):# Convert the class tensor to an integerclass_id = int(r.boxes.cls[j].item())  # Extract the class ID as an integer# Check if the detected class corresponds to 'person' (class ID 0)if class_id == 0:# Convert mask coordinates to an integer format for drawingmask = np.array(mask, dtype=np.int32)# Fill the segmentation mask with colorcv2.fillPoly(segmentation_mask, [mask], (0, 255, 0))# Combine the original image with the segmentation mask
segmentation_result = cv2.addWeighted(image, 1, segmentation_mask, 0.7, 0)# Save the output image with segmentation
cv2.imwrite("output_segmentation.jpg", segmentation_result)# Optionally display the image (make sure you're running in a GUI environment)
cv2.imshow("Segmentation Result", segmentation_result)
cv2.waitKey(0)
cv2.destroyAllWindows()

分割结果
在这里插入图片描述

完整源码

from ultralytics import YOLO
import cv2
import numpy as np# Load the input image using OpenCV
image = cv2.imread('test.jpg')# Load the model
model = YOLO("yolo11n-seg.pt")  # load an official YOLO model# Predict with the model
results = model(filename)  # predict on an image# Create an empty mask for segmentation
segmentation_mask = np.zeros_like(image, dtype=np.uint8)# Iterate over the results
for i, r in enumerate(results):# Iterate through the detected masksfor j, mask in enumerate(r.masks.xy):# Convert the class tensor to an integerclass_id = int(r.boxes.cls[j].item())  # Extract the class ID as an integer# Check if the detected class corresponds to 'person' (class ID 0)if class_id == 0:# Convert mask coordinates to an integer format for drawingmask = np.array(mask, dtype=np.int32)# Fill the segmentation mask with color (e.g., white for people)cv2.fillPoly(segmentation_mask, [mask], (0, 255, 0))# Combine the original image with the segmentation mask
segmentation_result = cv2.addWeighted(image, 1, segmentation_mask, 0.7, 0)# Save the output image with segmentation
cv2.imwrite("output_segmentation.jpg", segmentation_result)# Optionally display the image (make sure you're running in a GUI environment)
cv2.imshow("Segmentation Result", segmentation_result)
cv2.waitKey(0)
cv2.destroyAllWindows()

关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】可获取更多学习资源

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/442488.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

D31【python 接口自动化学习】- python基础之输入输出与文件操作

day31 文件的打开 学习日期:20241008 学习目标:输入输出与文件操作﹣-43 常见常新:文件的打开 学习笔记: 文件的概念 使用open()函数打开文件 文件路径处理 文件打开模式 总结 文件操作包括:打开&#…

VM虚拟机安装 CentOS 7.6 部署宝塔面板实操

一、centos下载 进入centos官网下载页面,选择7.6版本,依次点击 tree-》isos-》x86_64/-》CentOS-7-x86_64-DVD-1810.iso 进行下载。 centos官网下载页面: https://wiki.centos.org/Download.html1、打开下载页面 二、配置CentOS 7的网络 1、…

秋季猫咪掉毛严重怎么办?宠物空气净化器到底有没有用?

告别炎热的夏天,秋意随着家里猫咪新一轮的掉毛一起到来。我家两只布偶齐齐发力,疯狂掉毛,家里每个角落无一幸免。衣服上、地板上,肉眼可见家里的毛发量在不断增多,又陷入了日复一日的清理大战。除此之外,对…

『网络游戏』Tips弹窗队列【10】

修改脚本:DynamicWnd.cs 修改脚本:GameRoot.cs 运行项目 - Tips提示消息按顺序依次弹出显示 修改代码:GameRoot.cs 修改代码:LoginSys.cs 运行项目 设置初始化函数 将CreateWnd设置为隐藏 运行项目 本章结束

【C++ 11】for 基于范围的循环

文章目录 【 1. 基本用法 】【 2. for 新格式的应用 】2.1 for 遍历字符串2.2 for 遍历列表2.3 for 遍历的同时修改元素 问题背景 C 11标准之前(C 98/03 标准),如果要用 for 循环语句遍历一个数组或者容器,只能套用如下结构&#…

k8s 中的金丝雀发布(灰度发布)

目录 1 什么是金丝雀发布 2 Canary 发布方式 3 Canary 两种发布方式实操 3.1 准备工作 3.1.1 将 nginx 命名两个版本 v1 与 v2 3.1.2 暴露端口并指定微服务类型 3.1.3 进入 pod 修改默认发布文件 3.1.4 测试 service 是否正常 3.2 基于权重的灰度发布 3.2.1 创建 Igress 资源类…

macOS编译和运行prometheus2.54

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文详述了在macOS(M2芯片)上编译和运行prometheus2.54版本的过程,以及安装node_exporter和grafana并使用prometheus指标进行展示 本地…

关闭IDM自动更新

关闭IDM自动更新 1 打开注册表2 找到IDM注册表路径 1 打开注册表 winR regedit 2 找到IDM注册表路径 计算机\HKEY_CURRENT_USER\Software\DownloadManager 双击LstCheck,把数值数据改为0 完成 感谢阅读

微信小程序hbuilderx+uniapp+Android 新农村综合风貌旅游展示平台

目录 项目介绍支持以下技术栈:具体实现截图HBuilderXuniappmysql数据库与主流编程语言java类核心代码部分展示登录的业务流程的顺序是:数据库设计性能分析操作可行性技术可行性系统安全性数据完整性软件测试详细视频演示源码获取方式 项目介绍 小程序端…

力扣之603.连续空余座位

文章目录 1. 603.连续空余座位1.1 题干1.2 准备数据1.3 思路分析1.4 解法1.5 结果截图 1. 603.连续空余座位 1.1 题干 表: Cinema ----------------- | Column Name | Type | ----------------- | seat_id | int | | free | bool | ----------------- Seat_id 是该表的自动递…

2024年最新版本神马TV8.5影视APP源码 293TV影视点播系统源码搭建教程 神马TV8.2加强版反编译教程 保姆级小白可搭建 完整版本视频教程

2024年最新版的神马TV影视APP源码,版本号8.5,提供了前所未有的定制化选项和高级功能。用户可以轻松更换应用的包名和名称,确保品牌个性化。此外,该应用采用了动态域名加密技术,增强了数据传输的安全性。它支持自动切换…

多级代理与提权维权

目录 代理构建FRP介绍下载配置⽂件: sock5代理Venom介绍下载配置 icmpsh介绍下载配置 pingtunnel介绍下载配置 EarthWorm介绍下载使用 权限提升win权限提升常⻅利⽤⼯具 Linux权限提升SUID提权 权限维持win权限维持系统服务后⻔⾃启动⽬录注册表后⻔其他类似隐藏⽤户…

【Python】干货分享丨从入门到编写POC之常用的标准库

Python从入门到编写POC系列文章原创的一套完整教程,想系统学习Python技能的小伙伴,不要错过哦! 常用的标准库 安装完Python之后,我们也同时获得了强大的Python标准库,通过使用这些标准库可以为我们节省大量的时间&a…

5.k8s:helm包管理器,prometheus监控,elk,k8s可视化

目录 一、Helm 包管理器 1.什么是 Helm 2.安装Helm (3)Helm常用命令 (4)目录结构 (5)使用Helm完成redis主从搭建 二、Prometheus集群监控 1.监控方案 2.Prometheus监控k8s 三、ELK日志搜集 1.el…

图片压缩30KB以下怎么做?建议试试这些方法

图片怎么压缩30KB以下?在数字时代,无论是网页设计、社交媒体分享还是电子邮件附件发送,图片的大小往往成为影响加载速度和用户体验的关键因素之一。特别是在需要上传图片到对文件大小有限制的平台时,如何有效地将图片压缩至30KB甚…

【多重循环在Java中的应用】

多重循环在Java中的应用 介绍 多重循环是将一个循环嵌套在另一个循环体内的编程结构。Java中的 for、while 和 do...while 循环均可作为外层循环和内层循环。建议使用两层嵌套,最多不超过三层,以保持代码的可读性。 在多重循环中,外层循环执…

【重学 MySQL】六十二、非空约束的使用

【重学 MySQL】六十二、非空约束的使用 定义目的关键字特点作用创建非空约束删除非空约束注意事项 在MySQL中,非空约束(NOT NULL Constraint)是一种用于确保表中某列不允许为空值的数据库约束。 定义 非空约束(NOT NULL Constra…

ES postman操作全量修改,局部修改,删除

全量修改 修改需要调用的url 地址是http://192.168.1.108:9200/shopping/_doc/1001,调用方法使用put 只修改指定的需求的内容的请求方式 post方式就是局部修改 http://192.168.1.108:9200/shopping/_update/1001,请求方式post 上图是只修改id 为1001数…

Leetcode—416. 分割等和子集【中等】

2024每日刷题&#xff08;172&#xff09; Leetcode—416. 分割等和子集 C实现代码 class Solution { public:bool canPartition(vector<int>& nums) {int sum accumulate(nums.begin(), nums.end(), 0);if(sum % 2) {return false;}int m nums.size();int subSu…

leetcode68:文本左右对齐

给定一个单词数组 words 和一个长度 maxWidth &#xff0c;重新排版单词&#xff0c;使其成为每行恰好有 maxWidth 个字符&#xff0c;且左右两端对齐的文本。 你应该使用 “贪心算法” 来放置给定的单词&#xff1b;也就是说&#xff0c;尽可能多地往每行中放置单词。必要时可…