[C++]使用纯opencv部署yolov11-seg实例分割onnx模型

【算法介绍】

在C++中使用纯OpenCV部署YOLOv11-seg进行实例分割是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

部署过程大致如下:首先,需要确保开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C++编译器。然后,将YOLOv11-seg模型从PyTorch转换为ONNX格式,这通常涉及使用PyTorch的torch.onnx.export函数。接下来,使用OpenCV的DNN模块加载ONNX模型,并准备好模型的配置文件和类别名称文件。

在模型推理阶段,需要预处理输入图像(如调整大小、归一化等)以符合模型的输入要求,将预处理后的图像输入到模型中,并获取分割结果。对结果进行后处理,包括解析输出、应用非极大值抑制(NMS)和绘制分割边界等。

需要注意的是,由于YOLOv11-seg是一个复杂的模型,其输出可能包含多个层的信息,因此需要仔细解析模型输出,并根据YOLOv11-seg的具体实现进行后处理。此外,由于OpenCV的DNN模块对ONNX的支持可能有限,某些YOLOv11-seg的特性可能无法在OpenCV中直接实现,这时可能需要寻找替代方案。

总之,使用纯OpenCV部署YOLOv11-seg需要深入理解模型架构、OpenCV的DNN模块以及ONNX格式。

【效果展示】

【实现部分代码】

#include <iostream>
#include<opencv2/opencv.hpp>#include<math.h>
#include "yolov11_seg.h"
#include<time.h>
#define  VIDEO_OPENCV //if define, use opencv for video.using namespace std;
using namespace cv;
using namespace dnn;template<typename _Tp>
int yolov11(_Tp& task, cv::Mat& img, std::string& model_path)
{cv::dnn::Net net;if (task.ReadModel(net, model_path, false)) {std::cout << "read net ok!" << std::endl;}else {return -1;}//生成随机颜色std::vector<cv::Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(cv::Scalar(b, g, r));}std::vector<OutputParams> result;bool isPose = false;if (typeid(task) == typeid(Yolov8Pose)) {isPose = true;}PoseParams poseParams;if (task.Detect(img, net, result)) {if (isPose)DrawPredPose(img, result, poseParams);elseDrawPred(img, result, task._className, color);}else {std::cout << "Detect Failed!" << std::endl;}system("pause");return 0;
}template<typename _Tp>
int video_demo(_Tp& task, std::string& model_path)
{std::vector<cv::Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(cv::Scalar(b, g, r));}std::vector<OutputParams> result;cv::VideoCapture cap("car.mp4");if (!cap.isOpened()){std::cout << "open capture failured!" << std::endl;return -1;}cv::Mat frame;cv::dnn::Net net;if (task.ReadModel(net, model_path, true)) {std::cout << "read net ok!" << std::endl;}else {std::cout << "read net failured!" << std::endl;return -1;}while (true){cap.read(frame);if (frame.empty()){std::cout << "read to end" << std::endl;break;}result.clear();if (task.Detect(frame, net, result)) {DrawPred(frame, result, task._className, color,true);}int k = waitKey(10);if (k == 27) { //esc break;}}cap.release();system("pause");return 0;
}int main() {string detect_model_path = "./yolo11n-seg.onnx";Yolov11Seg detector;video_demo(detector, detect_model_path);
}

【视频演示】

C++使用纯opencv部署yolov11-seg实例分割onnx模型_哔哩哔哩_bilibili【测试环境】vs2019cmake==3.24.3opencv==4.8.0更多信息和源码下载参考博文:https://blog.csdn.net/FL1623863129/article/details/142716713, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:使用易语言调用opencv进行视频和摄像头每一帧处理,C# winform部署yolov10的onnx模型,图像分割领域如何水一篇论文,怎样学能快速出结果?UNet/Deeplab/Mask2former/SAM图像分割算法全详解!,C#使用onnxruntime部署Detic检测2万1千种类别的物体,强烈推荐!国防科技大学OpenCV图像处理全套教程!终于有人将opencv讲透了!存下吧,比啃书好多了!机器视觉/人脸检测/计算机视觉/人工智能,易语言部署yolov8的onnx模型,yolov8最新版onnx部署Android安卓ncnn,C# winform使用纯opencvsharp部署yolox-onnx模型,使用python部署yolov10的onnx模型,C# winform利用seetaface6实现C#人脸检测活体检测口罩检测年龄预测性别判断眼睛状态检测icon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1oE1dYTEGh/
【源码下载】

https://download.csdn.net/download/FL1623863129/89848150


【测试环境】

vs2019
cmake==3.24.3
opencv==4.8.0

【运行步骤】

下载模型:https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt

转换模型:yolo export model=yolo11n-seg.pt format=onnx dynamic=False opset=12 

编译项目源码,将模型,视频路径对应到源码即可运行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/443495.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencvjs 在前端的使用

一、opencv 官网 https://opencv.org/ 二、opencv是什么 三、opencvjs前端使用网站 https://docs.opencv.org/4.x/d0/d84/tutorial_js_usage.html https://docs.opencv.org/4.x/d5/d10/tutorial_js_root.html 四、opencvjs demo 举例 <!DOCTYPE html> <html>…

Ubuntu22.04之mpv播放器高频快捷键(二百七十)

简介&#xff1a; CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布&#xff1a;《Android系统多媒体进阶实战》&#x1f680; 优质专栏&#xff1a; Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a; 多媒体系统工程师系列【…

ML 系列:机器学习和深度学习的深层次总结( 15) — KNN — 第 1 部分

一、说明 K-最近邻 (KNN) 算法是一种流行的监督机器学习算法&#xff0c;用于分类和回归任务。它是非参数惰性学习算法的一个典型例子。KNN 被认为是一种惰性学习算法&#xff0c;因为它在训练阶段不对底层数据分布做出任何假设&#xff0c;也不从训练数据中学习特定模型。相反…

Golang | Leetcode Golang题解之第466题统计重复个数

题目&#xff1a; 题解&#xff1a; func getMaxRepetitions(s1 string, n1 int, s2 string, n2 int) int {n : len(s2)cnt : make([]int, n)for i : 0; i < n; i {// 如果重新给一个s1 并且s2是从第i位开始匹配 那么s2可以走多少位&#xff08;走完了就从头开始走p1, p2 :…

开发环境搭建之JAVA多个JDK版本安装

由于项目需要安装多个版本JDK、所以在此记录一下安装过程&#xff1a; 下载JDK1.8 11 17 等多个版本 简单粗暴一看就会、直接从官网下载exe安装包、然后配置环境变量即可 JDK1.8 JDK11 JDK17 安装完成之后如下图&#xff1a; 环境变量配置 右击“我的电脑”属性、找到…

Kron Reduction消去法如何操作,矩阵推导过程

三阶矩阵消去单节点 在电力系统中,母线上的电流注入始终为0,这样的节点可以通过一定的方法消除。以三节点为例,假设注入节点3的电流为0,则: [ I 1 I 2 I 3 ] = [ I 1 I 2 0 ] = [ Y 11 Y 12 Y 13 Y 21 Y 22 Y 23 Y 31 Y 32 Y 33 ] [ V 1 V 2 V 3 ] \left[\begin{array}{…

计算机网络:数据链路层 —— 数据链路层概述

文章目录 数据链路层主要功能 基本概念链路数据链路帧 数据链路层 在计算机网络中&#xff0c;链路层&#xff08;Data Link Layer&#xff09;是网络协议栈中的一层&#xff0c;负责管理和控制链路的建立、维护和释放&#xff0c;以及处理链路层的数据帧传输和错误控制等功能…

go发送邮件:在Go语言中实现发邮件的教程?

go发送邮件的教程指南&#xff1f;怎么使用Go语言发送电子邮件&#xff1f; Go语言&#xff0c;作为一种简洁、高效且并发性强的编程语言&#xff0c;自然也提供了丰富的库来支持邮件发送功能。AokSend将详细介绍如何在Go语言中实现发送邮件的功能&#xff0c;帮助你快速掌握这…

服务器数据恢复—硬盘坏扇区导致Linux系统服务器数据丢失的数据恢复案例

服务器数据恢复环境&#xff1a; 一台linux操作系统网站服务器&#xff0c;该服务器上部署了几十个网站&#xff0c;使用一块SATA硬盘。 服务器故障&原因&#xff1a; 服务器在工作过程中突然宕机。管理员尝试重新启动服务器失败&#xff0c;于是将服务器上的硬盘拆下检测…

腾讯云SDK地址生成器

音视频终端 SDK&#xff08;腾讯云视立方&#xff09;将新版连麦管理方案的多个功能集成至 腾讯云视立方控制台 > 连麦管理&#xff0c;便于用户快捷使用&#xff0c;具体分为快速上手、连麦应用、用量统计和地址生成器四个功能页面。更多连麦功能说明&#xff0c;请参见 新…

查询v$asm_disk等待enq: DD - contention

1.两个节点查询v$asm_disk均卡住&#xff0c;等待enq: DD - contention&#xff0c;阻塞源头为rbal进程&#xff0c;rbal进程未发生阻塞&#xff0c;未在异常等待事件上。 2.阻塞源头RBAL&#xff0c;在CPU上运行。没有在做rebalance磁盘平衡。 3.diag诊断日志中&#xff0c;阻…

springboot 整合 rabbitMQ(2)

springboot 整合 rabbitMQ&#xff08;1&#xff09;-CSDN博客 上期说了rabbitMQ的基础用法&#xff08;普通队列模式&#xff09; 这期学习一下如何防止消息重复消费和进阶用法&#xff08;订阅者模式&#xff09; 目录 重复消费问题 导致 RabbitMQ 重复消费问题的原因&a…

《Windows PE》4.1.4 手工重构导入表

接下来我们做一个稍微复杂一些的实验&#xff0c;实验需要四个程序&#xff1a; HelloWorld.exe&#xff1a;弹出MessageBox窗口&#xff08;实验1已实现&#xff09;。 Regedit.exe&#xff1a;添加注册表启动项。 LockTray.exe&#xff1a;锁定任务栏窗口。 UnLockTray.exe&…

pandas的用法

1.简介&#xff1a; pandas是一个开源的python数据分析库提供了快速&#xff0c;灵活和表达力强的数据结构&#xff0c;使数据清洗和分析工作变得更加简单易行。pandas的核心数据结构是DataFrame和Series 2.DataFrame的基本操作&#xff1a; DataFrame是pandas库中的一个二维…

【项目记录】大模型基于llama.cpp在Qemu-riscv64向量扩展指令下的部署

概述 本文在qemu-riscv64平台上&#xff0c;利用向量扩展指令加速运行基于llama.cpp构建的大模型。 参考博客链接&#xff1a; Accelerating llama.cpp with RISC-V Vector Extension 基于RVV的llama.cpp在Banana Pi F3 RISCV开发板上的演示 llama.cpp工程 Llama.cpp是一个基…

AI教父荣获2024诺贝尔物理学奖:杰弗里·辛顿和他的深度学习之路!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;专注于分享AI全维度知识&#xff0c;包括但不限于AI科普&#xff0c;AI工…

Chrome浏览器调用ActiveX控件--allWebOffice控件功能介绍

allWebOffice控件概述 allWebOffice控件能够实现在浏览器窗口中在线操作微软Office及WPS办公文档的应用&#xff08;阅读、编辑、保存等&#xff09;&#xff0c;支持编辑文档时保留修改痕迹&#xff0c;支持书签位置内容动态填充&#xff0c;支持公文套红&#xff0c;支持文档…

springMVC添加webapp

项目结构-->模块-->找到想添加的模块下的web 点击号 添加路径 会在.../src/main/目录下自动生成目录

Golang | Leetcode Golang题解之第467题环绕字符串中唯一的子字符串

题目&#xff1a; 题解&#xff1a; func findSubstringInWraproundString(p string) (ans int) {dp : [26]int{}k : 0for i, ch : range p {if i > 0 && (byte(ch)-p[i-1]26)%26 1 { // 字符之差为 1 或 -25k} else {k 1}dp[ch-a] max(dp[ch-a], k)}for _, v :…

【xilinx-versal】【Petalinux】I2C驱动开发问题记录

问题 调试中发现系统起来后无I2C设备。 仔细查找后发现没有配置versal的I2C控制器。 解决方法 打开versal的I2C控制器的配置 起来后I2C设备注册成功