Python 工具库每日推荐 【Pandas】

文章目录

    • 引言
    • Python数据处理库的重要性
    • 今日推荐:Pandas工具库
      • 主要功能:
      • 使用场景:
    • 安装与配置
    • 快速上手
      • 示例代码
      • 代码解释
    • 实际应用案例
      • 案例:销售数据分析
      • 案例分析
    • 高级特性
      • 数据合并和连接
      • 时间序列处理
      • 数据透视表
    • 扩展阅读与资源
    • 优缺点分析
      • 优点:
      • 缺点:
    • 总结

在这里插入图片描述

【 已更新完 TypeScript 设计模式 专栏,感兴趣可以关注一下,一起学习交流🔥🔥🔥 】

引言

在当今数据驱动的时代,高效处理和分析大量结构化数据已成为许多领域的关键需求,Python作为一种强大的编程语言,提供了众多优秀的数据处理库,本文将为您介绍一个在数据分析和处理领域广受欢迎的库——Pandas,无论您是数据分析师、机器学习工程师,还是对数据科学感兴趣的Python爱好者,Pandas都将成为您的得力助手。

Python数据处理库的重要性

  • 高效数据处理:优秀的数据处理库能够快速处理大量结构化数据,提高数据分析和处理的效率。
  • 简化复杂操作:封装了复杂的数据操作,使得数据清洗、转换和分析变得简单直观。
  • 提高代码可读性:提供直观的API,使数据处理代码更加清晰,易于理解和维护。
  • 与其他库协作:能够与其他Python科学计算库(如NumPy、Matplotlib)无缝集成,形成强大的数据分析生态系统。

今日推荐:Pandas工具库

Pandas 是 Python 中最受欢迎的数据处理库之一,它提供了高性能、易用的数据结构和数据分析工具。Pandas 的名字来源于 “Panel Data”(面板数据),反映了它处理多维结构化数据的能力。

主要功能:

  • 处理各种格式的结构化数据(CSV、Excel、SQL数据库等)
  • 灵活的数据结构:DataFrame和Series
  • 强大的数据操作和分析功能
  • 时间序列功能
  • 数据合并和连接
  • 数据透视表和交叉表
  • 数据可视化支持

使用场景:

  • 金融数据分析
  • 科学计算和统计分析
  • 机器学习数据预处理
  • 商业智能和报表生成
  • 社会科学研究数据处理
  • 大数据探索和可视化

安装与配置

使用 pip 安装Pandas:

pip install pandas

快速上手

示例代码

以下是一个简单的示例,展示如何使用 Pandas 读取 CSV 文件、进行基本数据操作和分析:

文章资料 sales_data.csv,见文章顶部资源下载

import pandas as pd# 读取CSV文件
df = pd.read_csv('sales_data.csv')# 查看数据基本信息
print(df.info())# 显示前几行数据
print(df.head())# 基本统计描述
print(df.describe())# 按产品类别分组并计算销售总额
sales_by_category = df.groupby('Category')['Sales'].sum()
print(sales_by_category)# 找出销售额最高的前5个产品
top_5_products = df.nlargest(5, 'Sales')
print(top_5_products[['Product', 'Sales']])

代码解释

  1. 首先,我们导入pandas库,通常以pd为别名。
  2. 使用pd.read_csv()方法读取CSV文件,创建一个DataFrame对象。
  3. df.info()显示DataFrame的基本信息,包括列名、非空值数量和数据类型。
  4. df.head()显示数据的前几行,默认为5行。
  5. df.describe()提供数值列的统计摘要。
  6. 使用groupby()sum()方法按类别汇总销售额。
  7. nlargest()方法用于找出销售额最高的前5个产品。

实际应用案例

案例:销售数据分析

下面是一个使用Pandas分析销售数据的例子:

import pandas as pd
import matplotlib.pyplot as plt# 设置显示中文字体
plt.rcParams["font.sans-serif"] = ["SimHei"]# 读取销售数据
sales_data = pd.read_csv('sales_data.csv')# 数据清洗
sales_data['Date'] = pd.to_datetime

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/444016.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于 CSS Grid 的简易拖拉拽 Vue3 组件,从代码到NPM发布(1)- 拖拉拽交互

基于特定的应用场景,需要在页面中以网格的方式,实现目标组件在网格中可以进行拖拉拽、修改大小等交互。本章开始分享如何一步步从代码设计,最后到如何在 NPM 上发布。 请大家动动小手,给我一个免费的 Star 吧~ 大家如果发现了 Bug…

探索未来:mosquitto-python,AI领域的新宠

文章目录 探索未来:mosquitto-python,AI领域的新宠背景:为何选择mosquitto-python?库简介:mosquitto-python是什么?安装指南:如何安装mosquitto-python?函数用法:5个简单…

代码随想录算法训练营第四十六天 | 647. 回文子串,516.最长回文子序列

四十六天打卡,今天用动态规划解决回文问题,回文问题需要用二维dp解决 647.回文子串 题目链接 解题思路 没做出来,布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串&#xff0…

深入理解Transformer的笔记记录(精简版本)---- Transformer

自注意力机制开启大规模预训练时代 1 从机器翻译模型举例 1.1把编码器和解码器联合起来看待的话,则整个流程就是(如下图从左至右所示): 1.首先,从编码器输入的句子会先经过一个自注意力层(即self-attention),它会帮助编码器在对每个单词编码时关注输入句子中的的其他单…

【JavaEE】——回显服务器的实现

阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 一:引入 1:基本概念 二:UDP socket API使用 1:socke…

2-118 基于matlab的六面体建模和掉落仿真

基于matlab的六面体建模和掉落仿真,将对象建模为刚体来模拟将立方体扔到地面上。同时考虑地面摩擦力、刚度和阻尼所施加的力,在三个维度上跟踪平移运动和旋转运动。程序已调通,可直接运行。 下载源程序请点链接:2-118 基于matla…

基于SpringBoot“花开富贵”花园管理系统【附源码】

效果如下: 系统注册页面 系统首页界面 植物信息详细页面 后台登录界面 管理员主界面 植物分类管理界面 植物信息管理界面 园艺记录管理界面 研究背景 随着城市化进程的加快和人们生活质量的提升,越来越多的人开始追求与自然和谐共生的生活方式&#xf…

使用激光跟踪仪提升码垛机器人精度

标题1.背景 码垛机器人是一种用于工业自动化的机器人,专门设计用来将物品按照一定的顺序和结构堆叠起来,通常用于仓库、物流中心和生产线上,它们可以自动执行重复的、高强度的搬运和堆垛任务。 图1 码垛机器人 传统调整码垛机器人的方法&a…

通信工程学习:什么是DIP数据集成点

DIP:数据集成点 DIP数据集成点(Data Integration Point),简称DIP,是物联网技术(IoT)和机器到机器(M2M)通信中的一个重要组成部分。DIP在数据集成和传输过程中扮演着关键角…

【笔记】6.2 玻璃的成型

玻璃熔体的成型方法,有压制法(例如,制作水杯、烟灰缸等)、压延法(例如,制作压花玻璃等)、浇铸法(例如,制作光学玻璃、熔铸耐火材料、铸石等) 、吹制法(例如,制作瓶罐等空心玻璃)、拉制法(例如,制作窗用玻璃、玻璃管、玻璃纤维等)、离心法(例如,制作玻璃棉等)、喷吹法(例如,制作…

Ansible 工具从入门到使用

1. Ansible概述 Ansible是一个基于Python开发的配置管理和应用部署工具,现在也在自动化管理领域大放异彩。它融合了众多老牌运维工具的优点,Pubbet和Saltstack能实现的功能,Ansible基本上都可以实现。 Ansible能批量配置、部署、管理上千台主…

各类排序详解

前言 本篇博客将为大家介绍各类排序算法,大家知道,在我们生活中,排序其实是一件很重要的事,我们在网上购物,需要根据不同的需求进行排序,异或是我们在高考完报志愿时,需要看看院校的排名&#…

qt QGraphicsItem详解

一、概述 QGraphicsItem是Qt框架中图形视图框架(Graphics View Framework)的一个核心组件,它是用于表示2D图形元素的基类。 它支持的功能包括: 设置和获取图形项的位置和尺寸。控制图形项的外观,如颜色、笔刷、边框…

京东web 京东e卡绑定 第二部分分析

声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 有相关问题请第一时间头像私信联系我删…

请求参数中字符串的+变成了空格

前端请求 后端接收到的结果 在URL中,某些字符(包括空格、、&、? 等)需要被编码。具体而言,在URL中,空格通常被编码为 或 %20。因此,如果你在请求参数中使用 ,它会被解释为一个空格。 如果…

2024重生之回溯数据结构与算法系列学习(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】

欢迎各位彦祖与热巴畅游本人专栏与博客 你的三连是我最大的动力 以下图片仅代表专栏特色 [点击箭头指向的专栏名即可闪现] 专栏跑道一 ➡️ MYSQL REDIS Advance operation 专栏跑道二➡️ 24 Network Security -LJS ​ ​ ​ 专栏跑道三 ➡️HCIP;H3C-SE;CCIP——…

智能边缘计算 | 项目快速部署指南

在数字化浪潮的推动下,边缘计算与人工智能的深度融合正在成为推动智能社会发展的新动力。 边缘计算通过将数据处理和分析任务从中心服务器转移到更接近数据源的端侧,从而显著降低数据传输延迟,提高了响应速度和安全隐私性。在人工智能的加持…

python的特殊方法——魔术方法

前言 __init__(self[]) ​编辑 __call__(self [, ...]) __getitem__(self, key) __len__(self) __repr__(self) / __str__(self) __add__(self, other) __radd__(self, other) 参考文献 前言 官方定义好的,以两个下划线开头且以两个下划线结尾来命名的方法…

在QT中将Widget提升为自定义的Widget后,无法设置Widget的背景颜色问题解决方法

一、问题 在Qt中将QWidget组件提升为自定义的QWidget后,Widget设置的样式失效,例如设置背景颜色为白色失效。 二、解决方法 将已经提升的QWidget实例对象,脱离父窗体的样式,然后再重新设置自己的样式。

[ComfyUI]太赞了!阿里妈妈发布升级版 Flux 图像修复模型,更强细节生成,更高融合度以及更大分辨率支持

小伙伴们还记得我们之前介绍的阿里妈妈发布的 Flux 的 ControlNet 图像修复模型不,之前发布的是 Alpha 早期测试版本,说实话和 Flux 原生的重绘其实差距不大,有些方面甚至还是原生的效果更好。 但是现在,Alpha 的升级版本 Beta 版…