中国地级市生态韧性数据及城市生态韧性数据(2000-2022年)

一测算方式

参考C刊《管理学刊》楚尔鸣(2023)老师的做法,城市生态韧性主要衡量一个城市在面临生态环境系统压力或突发冲击时,约束污染排放、维护生态环境状态和治理能力提升的综合水平。 参考郭海红和刘新民的研究,同时借鉴张吉鹏和彭靖秋环境质量绩效评估方法,并考虑到城市的经济社会特征,将城市生态环境韧性指数分解为状态韧性指数、压力韧性指数、响应韧性指数 3 个子维度,共同支撑整体链式的城市生态韧性指标体系,3 个二级指标由 14 个三级指标具体测度(见表 1)。 由于不同指标对总的韧性指数存在正反方向的影响,借鉴 Zhou 等[10]和王军等的方法对各指标数值进行无量纲化处理,使用熵值法赋权综合测算各城市的生态环境韧性指数,具体的如下图所示

二、资料范围:6567个样本,296个地级市,包括原始数据、计算代码和最终计算结果,大家可以验证一下确保准确性!


三、参考文献

楚尔鸣,孙红果,李逸飞.智慧城市建设对生态环境韧性的影响研究[J].管理学刊,2023,36(06):21-37.DOI:10.19808/j.cnki.41-1408/F.2023.0051.

feeaef6c0bc66f1fcd8df17d31c5750.png

83e55a5d7b6f553541532904baf4075.png

  四、样例数据及指标体系

4b8c31c0f6732165dedc101debf255d.png

 五、包含内容

 六、全部内容下载链接:https://download.csdn.net/download/samLi0620/89876901

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/444846.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis持久化机制(RDBAOF详解)

目录 一、Redis持久化介绍二、Redis持久化方式1、RDB持久化(1) 介绍(2) RDB持久化触发机制(3) RDB优点和缺点(4) RDB流程 2、AOF(append only file)持久化(1) 介绍(2) AOF优点和缺点(3) AOF文件重写(4) AOF文件重写流程 三、AOF和RDB持久化注意事项 一、Redis持久化介绍 Redis…

【小工具分享】下载保存指定网页的所有图片

一、保存百度首页所有的图片 先看一下保存的图片情况 二、思路 1、打开网页 2、获取所有图片 3、依次下载保存图片到指定路径 三、完整代码 from selenium import webdriver from selenium.webdriver.common.by import By b webdriver.Firefox() import urllib.request…

C++系统教程004-数据类型(03)

一 .变量 变量是指在程序运行期间其值可以发生改变的量。每个变量都必须有一个名称作为唯一的标识,且具有一个特定的数据类型。变量使用之前,一定要先进行声明或定义。 1.变量的声明和定义 C中,变量声明是指为变量提供一个名称&#xff0c…

嵌入式面试——FreeRTOS篇(七) 软件定时器

本篇为:FreeRTOS 软件定时器篇 一、软件定时器的简介 1、定时器介绍 答: 定时器:从指定的时刻开始,经过一个指定时间,然后触发一个超时事件,用户可以自定义定时器周期。 硬件定时器:芯片本…

基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 DE优化 4.2 GWO优化 5.完整程序 1.程序功能描述 基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法matlab仿真,对比SVM和GWO-SVM。 2.测试软件版本以及运行结果展示…

论文阅读:Split-Aperture 2-in-1 Computational Cameras (二)

Split-Aperture 2-in-1 Computational Cameras (一) Coded Optics for High Dynamic Range Imaging 接下来,文章介绍了二合一相机在几种场景下的应用,首先是高动态范围成像,现有的快照高动态范围(HDR)成像工作已经证…

自然语言处理(NLP)论文数量的十年趋势:2014-2024

引言 近年来,自然语言处理(NLP)已成为人工智能(AI)和数据科学领域中的关键技术之一。随着数据规模的不断扩大和计算能力的提升,NLP技术从学术研究走向了广泛的实际应用。通过观察过去十年(2014…

处理 Vue3 中隐藏元素刷新闪烁问题

一、问题说明 页面刷新,原本隐藏的元素会一闪而过。 效果展示: 页面的导航栏通过路由跳转中携带的 meta 参数控制导航栏的 显示/隐藏,但在实践过程中发现,虽然元素隐藏了,但是刷新页面会出现闪烁的问题。 项目源码&…

ros2:从github上下载源码进行编译

首先,创建工作空间 # 1. 递归创建工作空间目录 mkdir -p catkin_ws/src # 2. 进入src目录 cd catkin_ws/src然后如果你没有安装git,需要 sudo apt install git然后输入。 git clone https://github.com/6-robot/wpr_simulation.git这时候,…

MYSQL 常见锁机制详解,常见锁问题排查及分析

1,锁分类 锁冲突是影响数据库性能的重要指标,本章节介绍MYSQL常见锁,及各种说的常用示例,mysql锁的分类如下: 从操作类型分类:读锁、写锁; 从操作粒度分类:表锁、页锁、行锁&#x…

文献阅读Prov-GigaPath模型--相关知识点罗列

文章链接:A whole-slide foundation model for digital pathology from real-world data | NatureDigital pathology poses unique computational challenges, as a standard gigapixel slide may comprise tens of thousands of image tiles1–3. Prior models hav…

Java中的二维数组

二维数组 使用方式1:动态初始化1.语法:2.比如:3.二维数组在内存的存在形式 使用方式2:动态初始化使用方法3:动态初始化--列数不确定使用方式4:静态初始化1.定义2.使用 使用方式1:动态初始化 1.…

HiRT | 异步控制策略,告别VLA时延问题

论文:HiRT: Enhancing Robotic Control with Hierarchical Robot Transformers 前言:HiRT 通过异步处理的策略,将 VLM 作为低频慢思考过程,将轻量的动作策略模型作为高频快响应过程 ,以此解决 VLA 驱动带来的控制时延问…

RNN经典案例——构建人名分类器

RNN经典案例——人名分类器 一、数据处理1.1 去掉语言中的重音标记1.2 读取数据1.3 构建人名类别与人名对应关系字典1.4 将人名转换为对应的onehot张量 二、构建RNN模型2.1 构建传统RNN模型2.2 构建LSTM模型2.3 构建GRU模型 三、构建训练函数并进行训练3.1 从输出结果中获得指定…

TON生态小游戏开发:推广、经济模型与UI设计的建设指南

随着区块链技术的快速发展,基于区块链的Web3游戏正引领行业变革。而TON生态小游戏,借助Telegram庞大的用户基础和TON(The Open Network)链上技术,已成为这一领域的明星之一。国内外开发者正迅速涌入,开发和…

基于SpringBoot+Vue的船舶监造系统(带1w+文档)

基于SpringBootVue的船舶监造系统(带1w文档) 基于SpringBootVue的船舶监造系统(带1w文档) 大概在20世纪90年代,我国才开始研发船舶监造系统,与一些发达国家相比,系统研发起步比较晚。当时的计算机技术刚开始发展起来,国家经济力量…

SEO(搜索引擎优化)指南

SEO(Search Engine Optimization)是通过优化网站内容、结构和外部链接,提升网页在搜索引擎结果中的排名,从而增加网站流量的过程。SEO 涉及多个层面,包括技术 SEO、内容优化、外部链接建设等。以下是 SEO 的核心优化策…

京东零售数据湖应用与实践

作者:陈洪健:京东零售大数据架构师,深耕大数据 10 年,2019 年加入京东,主要负责 OLAP 优化、大数据传输工具生态、流批一体、SRE 建设。 当前企业数据处理广泛采用 Lambda 架构。Lambda 架构的优点是保证了数据的完整性…

【论文阅读】Learning a Few-shot Embedding Model with Contrastive Learning

使用对比学习来学习小样本嵌入模型 引用:Liu, Chen, et al. “Learning a few-shot embedding model with contrastive learning.” Proceedings of the AAAI conference on artificial intelligence. Vol. 35. No. 10. 2021. 论文地址:下载地址 论文代码…

强化学习笔记之【SAC算法】

强化学习笔记之【SAC算法】 前言: 本文为强化学习笔记第三篇,第一篇讲的是Q-learning和DQN,第二篇DDPG,第三篇TD3 TD3比DDPG少了一个target_actor网络,其它地方有点小改动 CSDN主页:https://blog.csdn.n…