数学建模算法与应用 第11章 偏最小二乘回归及其方法

目录

11.1 偏最小二乘回归概述

11.2 Matlab 偏最小二乘回归命令

Matlab代码示例:偏最小二乘回归

11.3 案例分析:化学反应中的偏最小二乘回归

Matlab代码示例:光谱数据的PLS回归

习题 11

总结


  偏最小二乘回归(Partial Least Squares Regression, PLS)是一种用于分析多个自变量和因变量之间关系的多元统计方法,特别适用于当自变量之间存在多重共线性,或自变量数量大于样本数量的情况。PLS通过同时对自变量和因变量进行降维,提取出一组潜在变量来建立回归模型。本章将介绍偏最小二乘回归的基本概念、PLS在Matlab中的应用,以及典型案例分析。

11.1 偏最小二乘回归概述

  偏最小二乘回归通过将自变量和因变量同时投射到新的子空间中来解决多重共线性的问题。PLS模型可以看作是主成分分析和多元回归的结合:

  • 主成分提取:PLS从自变量和因变量中提取出潜在成分,以尽可能解释数据中的方差。

  • 降维与回归:PLS在降维的同时进行回归,保证提取的潜在成分对因变量的预测能力最强。

PLS适用于化学、经济、社会科学等领域,尤其是在自变量维数较高且存在多重共线性的情况下。

11.2 Matlab 偏最小二乘回归命令

  Matlab提供了plsregress函数用于执行偏最小二乘回归分析。通过这个函数,可以实现对自变量矩阵和因变量矩阵的回归建模。

Matlab代码示例:偏最小二乘回归
% 生成模拟数据
rng(0);
X = randn(100, 10);  % 自变量矩阵,有10个特征
Y = X(:,1) + 0.5 * X(:,2) - 0.3 * X(:,3) + randn(100, 1);  % 因变量,结合部分自变量生成% 进行偏最小二乘回归,提取前3个成分
nComponents = 3;
[Xloadings, Yloadings, Xscores, Yscores, betaPLS, PCTVAR] = plsregress(X, Y, nComponents);% 使用PLS模型对数据进行预测
Y_pred = [ones(size(X,1), 1) X] * betaPLS;% 绘制预测结果与真实结果对比
figure;
plot(Y, Y_pred, 'o');
xlabel('真实值');
ylabel('预测值');
title('偏最小二乘回归预测结果');

  在上述代码中,我们生成了一组模拟数据,并使用plsregress函数对数据进行偏最小二乘回归分析,提取了3个潜在成分,并绘制了真实值和预测值的对比。

11.3 案例分析:化学反应中的偏最小二乘回归

  在化学分析中,偏最小二乘回归经常用于通过光谱数据预测化学物质的浓度。例如,可以通过光谱数据预测某化学物质的浓度,PLS在应对高度相关的光谱数据时效果尤为显著。

案例背景

  在化学反应中,光谱分析是一种重要的手段,用于测量反应物和产物的浓度。在光谱数据中,每个波长对应一个光谱强度值,但由于光谱数据通常包含大量的波长点,这些波长之间可能存在高度相关性,这使得传统的回归方法无法有效处理。PLS通过将光谱数据降维,提取最具代表性的潜在成分,从而实现对化学物质浓度的准确预测。

数据说明

  在本案例中,我们模拟了一组包含100个样本、50个波长点的光谱数据,以及一个因变量,代表某种化学物质的浓度。光谱数据的每一行代表一个样本在不同波长处的光谱强度。

Matlab代码示例:光谱数据的PLS回归
% 生成模拟光谱数据
X = randn(100, 50);  % 光谱数据,有50个波长点
Y = 0.8 * X(:,10) - 0.6 * X(:,20) + 0.4 * X(:,30) + randn(100, 1);  % 化学物质的浓度% 进行偏最小二乘回归,提取前5个成分
nComponents = 5;
[Xloadings, Yloadings, Xscores, Yscores, betaPLS, PCTVAR] = plsregress(X, Y, nComponents);% 使用PLS模型对数据进行预测
Y_pred = [ones(size(X,1), 1) X] * betaPLS;% 绘制预测结果与真实浓度对比
figure;
plot(Y, Y_pred, 'o');
xlabel('真实浓度');
ylabel('预测浓度');
title('光谱数据的偏最小二乘回归预测');
结果分析

  从上述代码的结果中,可以看到PLS回归能够很好地捕捉光谱数据与化学物质浓度之间的关系。绘制的真实浓度与预测浓度的对比图表明,PLS模型可以有效地预测化学物质的浓度,尤其是在自变量数量远大于样本数量,且存在多重共线性的情况下。

  PLS模型的性能可以通过以下指标进行评估:

  • 预测误差(RMSE):可以计算预测值与真实值之间的均方根误差(RMSE),以衡量模型的预测精度。

  • 解释方差:通过提取的潜在成分解释的总方差,可以评估模型对数据的拟合程度。

Matlab代码示例:评估模型性能
% 计算均方根误差(RMSE)
rmse = sqrt(mean((Y - Y_pred).^2));% 输出RMSE和解释方差
disp(['模型的均方根误差(RMSE):', num2str(rmse)]);
disp(['前5个成分解释的总方差(%):', num2str(sum(PCTVAR(2, 1:nComponents)) * 100)]);

  通过计算RMSE,我们可以得到模型的预测误差,这个值越小,表明模型的预测效果越好。此外,解释方差可以帮助我们理解提取的成分对因变量的影响程度。

习题 11

在第十一章结束后,提供了一些相关的习题,帮助读者深入理解偏最小二乘回归的应用。习题11包括:

  1. PLS建模:对一组模拟数据使用偏最小二乘回归进行建模,提取不同数量的潜在成分,并对比预测效果。

  2. 光谱分析应用:使用PLS对一组模拟的光谱数据进行分析,预测未知样本的浓度。

  3. 降维与回归:使用PLS对一组具有多重共线性的数据进行降维处理,并构建回归模型。

  4. 模型性能评估:对PLS模型进行评估,计算RMSE并分析提取成分对数据方差的解释能力。

通过这些习题,读者可以进一步掌握偏最小二乘回归在实际中的应用,以及如何利用Matlab工具进行PLS的建模和数据预测。

总结

  第十一章介绍了偏最小二乘回归的基本概念及其应用,包括PLS的理论基础、在Matlab中的实现方法以及具体的应用案例。偏最小二乘回归是一种非常有效的多元回归方法,尤其在自变量之间存在多重共线性的情况下,PLS能够同时实现降维和回归,是解决高维数据分析问题的有效工具。通过本章的学习,读者可以掌握PLS的基本原理和方法,并利用Matlab进行偏最小二乘回归的建模和应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/445291.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何加密重要U盘?U盘怎么加密保护?

在日常生活中,我们常常使用U盘来存储和传输重要文件。然而,U盘的便携性也意味着它容易丢失或被盗。为了保护U盘中的数据安全,我们需要对U盘进行加密。本文将为您介绍如何加密重要U盘,以及U盘加密保护的方法。 BitLocker BitLocke…

动态规划——多状态动态规划问题

目录 一、打家劫舍 二、打家劫舍 II 三、删除并获得点数 四、粉刷房子 五、买卖股票的最佳时机含冷冻期 六、买卖股票的最佳时机含手续费 七、买卖股票的最佳时机III 八、买卖股票的最佳时机IV 一、打家劫舍 打家劫舍 第一步:确定状态表示 当我们每次…

『Mysql进阶』Mysql SQL语句性能分析(七)

目录 什么是Profile? 开启Profile功能 基本使用 分析案例 什么是Profile? Query Profiler是 MySQL 自带的一种 Query 诊断分析工具 ,通过它可以分析出一条 SQL 语句的 硬件性能瓶颈 在什么地方。 通常我们是使用的 explain ,…

企业内部文档安全外发如何挑选合适的外发系统?

企业文档的外发不仅关系到运营效率,更是信息安全的重要组成部分。面对B2B模式下文档交换的普遍性和重要性,企业内部文档的安全外发成为了众多公司关注的重点之一。 随着互联网技术的发展,企业之间的合作越来越紧密,文档的交流也变…

springboot+react实现移动端相册(上传图片到oss/ 批量删除/ 查看图片详情等功能)

相册页面及功能展示: react前端结构及代码: Java后端结构及代码 数据库结构: photo: user 这是首个利用AI自有知识构建的简易相册系统,项目是react构造前端spring boot构造后端。 前端有四个主要页面&#xff1…

Compose第六弹 对话框与弹窗

1.compose中怎么使用对话框? 2.怎么显示Popup弹窗? 一、Compose显示对话框 二、Popup Popup就类似以前的Popupwindow,我们可以看到其实上面的DropdownMenu是Popup的一个具体实现。 2.1 Popup定义 Popup的定义如下: Composable…

Windows 下 cocos2d-x-3.17.2 VS2017开发环境搭建

1.下载cocos2d-x-3.17.2 源码: Cocos2d-x - 成熟、轻量、开放的跨平台解决方案 2.下载Python2 Python 2.7.0 Release | Python.org 加入环境变量: 测试版本

JAVA基础 day12

一、File、IO流 File是java.io.包下的类,file类的对象,用于代表当前操作系统的文件(可以代表文件、文件夹),使用File可以操作文件及文件夹。 注意:File只能对文件本身进行操作,不能读写文件里…

哈夫曼树和哈夫曼编码

现在需要对下列字符编码 其中我么你发现A 出现三次,B出现一次,C出现两次,D出现一次 那么我们统计出现次数为:3,2,1,1 我们将1,1组成一个树 现在统计次数变为3,2&#x…

Java—继承性与多态性

目录 一、this关键字 1. 理解this 2. this练习 二、继承性 2.1 继承性的理解 2.1.1 多层继承 2.2 继承性的使用练习 2.2.1 练习1 2.2.2 练习2 2.3 方法的重写 2.4 super关键字 2.4.1 子类对象实例化 三、多态性 3.1 多态性的理解 3.2 向下转型与多态练习 四、Ob…

构建高效作业管理平台:Spring Boot师生协作评审系统

1系统概述 1.1 研究背景 如今互联网高速发展,网络遍布全球,通过互联网发布的消息能快而方便的传播到世界每个角落,并且互联网上能传播的信息也很广,比如文字、图片、声音、视频等。从而,这种种好处使得互联网成了信息传…

神经网络超参数优化

遗传算法与深度学习实战(16)——神经网络超参数优化 0. 前言1. 深度学习基础1.1 传统机器学习1.2 深度学习 2. 神经网络超参数调整2.1 超参数调整策略2.2 超参数调整对神经网络影响 3. 超参数调整规则小结系列链接 0. 前言 我们已经学习了多种形式的进化…

鸿蒙开发实战项目【硅谷租房】--- 项目介绍

目录 一、简述 二、项目资料 2.1 UI设计稿 2.2 服务器 2.3 Apifox接口JSON文件 使用 Apifox 测试接口 一、简述 这是一个基于 鸿蒙 API12 开发的移动端租房 App,用户可以使用该应用搜索租房列表、查看房屋详情、预约租房等。 该项目的tabbar包含五部分&…

网站集群批量管理-Ansible(ad-hoc)

1. 概述 1. 自动化运维: 批量管理,批量分发,批量执行,维护 2. 无客户端,基于ssh进行管理与维护 2. 环境准备 环境主机ansible10.0.0.7(管理节点)nfs01 10.0.0.31(被管理节点)backup10.0.0.41(被管理节点) 2.1 创建密钥认证 安装sshpass yum install -y sshpass #!/bin/bash ##…

Android终端GB28181音视频实时回传设计探讨

技术背景 好多开发者,在调研Android平台GB28181实时回传的时候,对这块整体的流程,没有个整体的了解,本文以大牛直播SDK的SmartGBD设计开发为例,聊下如何在Android终端实现GB28181音视频数据实时回传。 技术实现 Andr…

操作系统导论阅读 - 虚拟化

近期系统性地过一下操作系统导论 第二章 操作系统介绍 冯诺伊曼架构 冯诺依曼架构的核心思想: 使用二进制存储数据像存储数据一样来存储程序计算机由输入设备,输出设备以及控制器,运算器和存储器五部分组成 通常使用的键盘,…

SevenZip++显示当前压缩进度的范例

以前写7z压缩工具,直接调用命令行的话,因为无法提取命令行的压缩进度所以无法在界面上显示当前压缩进度,现在用SevenZip,成功提取到了压缩到7z过程中的压缩进度,先在命令行中展示一下效果吧。 直接上代码,看…

企业架构系列(19)TOGAF企业连续体和构建块

TOGAF 企业连续体(Enterprise Continuum)是一个用于对架构描述进行分类的框架。它有助于突出架构师在哪个抽象层次上工作,并概述了不同目的下应使用的不同层次。而构建块(Building Blocks)是用来描述这些架构和解决方案…

机器学习——自动化机器学习(AutoML)

机器学习——自动化机器学习(AutoML) 自动化机器学习(AutoML)——2024年的新趋势什么是AutoML?AutoML的关键组成部分AutoML的优势AutoML 实例:使用Auto-sklearn进行回归分析AutoML的应用领域2024年值得关注…

高效的读书与笔记管理:打造个人知识体系

01 读书学习的常见问题 1、读书⼯具分散,划线和笔记分散,导致我们的复习、搜索效率低。⽐如不同书籍中,提到了同⼀个问题的观点,很难进行关联。 2、读书,仅限于读,知道别⼈的观点,但是缺乏内…