文章目录
- 初知C++:AVL树
- 1.AVL树的概念
- 2.AVL树的是实现
- 2.1.AVL树的结构
- 2.2.AVL树的插入
- 2.3.旋转
- 2.4.AVL树的查找
- 2.5.AVL树平衡检测
初知C++:AVL树
1.AVL树的概念
• AVL树是最先发明的自平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:它的左右子树都是AV树,且左右子树的高度差的绝对值不超过1。AVL树是⼀颗高度平衡搜索⼆叉树,通过控制⾼度差去控制平衡。
• AVL树得名于它的发明者G.M.Adelson-Velsky和E.M.Landis是两个前苏联的科学家,他们在1962年的论⽂《Analgorithmfortheorganizationofinformation》中发表了它。
• AVL树实现这⾥我们引⼊⼀个平衡因⼦(balancefactor)的概念,每个结点都有⼀个平衡因⼦,任何结点的平衡因⼦等于右⼦树的⾼度减去左⼦树的⾼度,也就是说任何结点的平衡因⼦等于0/1/-1,AVL树并不是必须要平衡因⼦,但是有了平衡因⼦可以更⽅便我们去进⾏观察和控制树是否平衡,就像⼀个⻛向标⼀样。
• 思考⼀下为什么AVL树是⾼度平衡搜索⼆叉树,要求⾼度差不超过1,⽽不是⾼度差是0呢?0不是更好的平衡吗?画画图分析我们发现,不是不想这样设计,⽽是有些情况是做不到⾼度差是0的。⽐如⼀棵树是2个结点,4个结点等情况下,⾼度差最好就是1,⽆法作为⾼度差是0 。
• AVL树整体结点数量和分布和完全⼆叉树类似,⾼度可以控制在 logN,那么增删查改的效率也可以控制在O(logN),相⽐⼆叉搜索树有了本质的提升。
2.AVL树的是实现
2.1.AVL树的结构
在下图我们可以看到_parent指针,后续更新平衡因子,有很大的作用。
2.2.AVL树的插入
2.2.1 AVL树插⼊⼀个值的⼤概过程
-
插⼊⼀个值按⼆叉搜索树规则进⾏插⼊。
-
新增结点以后,只会影响祖先结点的⾼度,也就是可能会影响部分祖先结点的平衡因⼦,所以更新
从新增结点->根结点路径上的平衡因⼦,实际中最坏情况下要更新到根,有些情况更新到中间就可
以停⽌了,具体情况我们下⾯再详细分析。 -
更新平衡因⼦过程中没有出现问题,则插⼊结束
-
更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树
的⾼度,不会再影响上⼀层,所以插⼊结束。
2.2.2 平衡因⼦更新
更新原则:
•
平衡因⼦=右⼦树⾼度-左⼦树⾼度(也可以变为左子树的高度-右子树的高度)
•
只有⼦树⾼度变化才会影响当前结点平衡因⼦。
•
插⼊结点,会增加⾼度,所以新增结点在parent的右⼦树,parent的平衡因⼦++,新增结点在
parent的左⼦树,parent平衡因⼦–
•
parent所在⼦树的⾼度是否变化决定了是否会继续往上更新
更新停⽌条件:
•
更新后parent的平衡因⼦等于0,更新中parent的平衡因⼦变化为-1->0或者1->0,说明更新前
parent⼦树⼀边⾼⼀边低,新增的结点插⼊在低的那边,插⼊后parent所在的⼦树⾼度不变,不会
影响parent的⽗亲结点的平衡因⼦,更新结束。
•
更新后parent的平衡因⼦等于1或-1,更新前更新中parent的平衡因⼦变化为0->1或者0->-1,说
明更新前parent⼦树两边⼀样⾼,新增的插⼊结点后,parent所在的⼦树⼀边⾼⼀边低,parent所
在的⼦树符合平衡要求,但是⾼度增加了1,会影响arent的⽗亲结点的平衡因⼦,所以要继续向上
更新。
•
更新后parent的平衡因⼦等于2或-2,更新前更新中parent的平衡因⼦变化为1->2或者-1->-2,说
明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,parent所在的⼦树⾼的那边更⾼
了,破坏了平衡,parent所在的⼦树不符合平衡要求,需要旋转处理,旋转的⽬标有两个:1、把
parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。所以旋转后也不
需要继续往上更新,插⼊结束。
更新到10结点,平衡因⼦为2,10所在的⼦树已经不平衡,需要旋转处理
更新到中间结点,3为根的⼦树⾼度不变,不会影响上⼀层,更新结束
最坏更新到根停⽌
2.2.3插⼊结点及更新平衡因⼦的代码实现
2.3.旋转
2.3.1 旋转的原则
- 保持搜索树的规则
- 让旋转的树从不满⾜变平衡,其次降低旋转树的⾼度
旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋。
说明:下⾯的图中,有些结点我们给的是具体值,如10和5等结点,这⾥是为了⽅便讲解,实际中是什
么值都可以,只要⼤⼩关系符合搜索树的规则即可。
2.3.2 右单旋
•
本图1展⽰的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要
求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树,
是⼀种概括抽象表⽰,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/
图5进⾏了详细描述。
•
在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平
衡因⼦从-1变成-2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树左边太⾼了,需要
往右边旋转,控制两棵树的平衡。
•
旋转核⼼步骤,因为5<b⼦树的值<10,将b变成10的左⼦树,10变成5的右⼦树,5变成这棵树新
的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原
则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。
下面五张图分别为右旋的各种情况!!!!!(请仔细观看有利于理解哦)
图1:
图2:
图3:
图4:
图5:
2.3.3 右单旋代码实现
这里传过去的parent是平衡因子为2或者-2的节点!
2.3.4左单旋
•本图6展⽰的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树,是⼀种概括抽象表⽰,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体跟上⾯左旋类似。
•在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平衡因⼦从1变成2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树右边太⾼了,需要往左边旋转,控制两棵树的平衡。
•旋转核⼼步骤,因为10<b⼦树的值<15,将b变成10的右⼦树,10变成15的左⼦树,15变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。
2.3.5左单旋代码实现
2.3.6左右双旋
通过图7和图8可以看到,左边⾼时,如果插⼊位置不是在a⼦树,⽽是插⼊在b⼦树,b⼦树⾼度从h变成h+1,引发旋转,右单旋⽆法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边⾼,但是插⼊在b⼦树中,10为跟的⼦树不再是单纯的左边⾼,对于10是左边⾼,但是对于5是右边⾼,需要⽤两次旋转才能解决,以5为旋转点进⾏⼀个左单旋,以10为旋转点进⾏⼀个右单旋,这棵树这棵树就平衡了。
图7:
图8:
• 图7和图8分别为左右双旋中h0和h1具体场景分析,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL⼦树进⾏分析,另外我们需要把b⼦树的细节进⼀步展开为8和左⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲5为旋转点进⾏左单旋,左单旋需要动b树中的左⼦树。b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通过观察8的平衡因⼦不同,这⾥我们要分三个场景讨论。
• 场景1:h>=1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1并为h并不断更新8->5->10平衡因⼦,引发旋转,其中8的平衡因⼦为-1,旋转后8和5平衡因⼦为0,10平衡因⼦为1。
• 场景2:h>=1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新8->5->10平衡因⼦,引发旋转,其中8的平衡因⼦为1,旋转后8和10平衡因⼦为0,5平衡因⼦为-1。
• 场景3:h==0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新5->10平衡因⼦,引发旋转,其中8的平衡因⼦为0,旋转后8和10和5平衡因⼦均为0。
2.3.7 左右双旋代码实现
2.3.8右左双旋
•跟左右双旋类似,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL⼦树进⾏分析,另外我们需要把b⼦树的细节进⼀步展开为12和左⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲15为旋转点进⾏右单旋,右单旋需要动b树中的右⼦树。b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通过观察12的平衡因⼦不同,这⾥我们要分三个场景讨论。
•场景1:h>=1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1变为h并不断更新12->15->10平衡因⼦,引发旋转,其中12的平衡因⼦为-1,旋转后10和12平衡因⼦为0,15平衡因⼦为1。
•场景2:h>=1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新12->15->10平衡因⼦,引发旋转,其中12的平衡因⼦为1,旋转后15和12平衡因⼦为0,10平衡因⼦为-1。
• 场景3:h==0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新15->10平衡因⼦,引发旋转,其中12的平衡因⼦为0,旋转后10和12和15平衡因⼦均为0。
2.3.9右左双旋代码实现
2.4.AVL树的查找
2.5.AVL树平衡检测
我们实现的AVL树是否合格,我们通过检查左右⼦树⾼度差的的程序进⾏反向验证,同时检查⼀下结点的平衡因⼦更新是否出现了问题。(空树也是AVL树哦!!!!)