K8s-services+pod详解1

一、Service

我们能够利用Deployment创建一组Pod来提供具有高可用性的服务。

虽然每个Pod都会分配一个单独的Pod IP,然而却存在如下两问题:

  • Pod IP 会随着Pod的重建产生变化
  • Pod IP 仅仅是集群内可见的虚拟IP,外部无法访问

这样对于访问这个服务带来了难度。因此,Kubernetes设计了Service来解决这个问题。

Service可以看作是一组同类Pod对外的访问接口。借助Service,应用可以方便地实现服务发现和负载均衡

操作一:创建集群内部可访问的Service
# 创建一个pod控制器,后面需要
[root@master ~]# kubectl create deploy nginx --image=nginx --port=80 -n cc
deployment.apps/nginx created# 暴露Service
[root@master ~]# kubectl expose deploy nginx --name=svc-nginx1 --type=ClusterIP --port=80 --target-port=80 -n ccservice/svc-nginx1 exposed# 查看service
[root@master ~]# kubectl get svc svc-nginx1 -n cc -o wide
NAME         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE   SELECTOR
svc-nginx1   ClusterIP   10.100.113.50   <none>        80/TCP    44s   app=nginx

这里产生了一个CLUSTER-IP,这就是Service的IP,在Service的生命周期中,这个地址是不会变动的。可以通过这个IP访问当前service对应的POD

[root@master ~]# curl 10.100.113.50:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
操作二:创建集群外部也可访问的Service

上面创建的Service的type类型为ClusterIP,这个ip地址只用集群内部可访问# 如果需要创建外部也可以访问的Service,需要修改type为NodePort

# 修改type为NodePort
[root@master ~]# kubectl expose deploy nginx --name=svc-nginx2 --type=NodePort --port=80 --target-port=80 -n cc
service/svc-nginx2 exposed

此时查看,会发现出现了NodePort类型的Service,而且有一对Port(80:31928/TC)

[root@master ~]# kubectl get svc svc-nginx2 -n cc -o wide
NAME         TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE   SELECTOR
svc-nginx2   NodePort   10.98.54.222   <none>        80:32031/TCP   12s   app=nginx

接下来就可以通过集群外的主机访问 节点IP:31928访问服务了# 例如在的电脑主机上通过浏览器访问下面的地址http://192.168.100.10:31928/

删除Service

[root@master ~]# kubectl delete svc svc-nginx1 -n cc
service "svc-nginx1" deleted
[root@master ~]# kubectl delete svc svc-nginx2 -n cc
service "svc-nginx2" deleted

yaml配置方式

创建一个svc-nginx.yaml,内容如下:

apiVersion: v1
kind: Service
metadata:name: svc-nginxnamespace: cc
spec:clusterIP: 10.109.179.231 #固定svc的内网ipports:- port: 80protocol: TCPtargetPort: 80selector:run: nginxtype: ClusterIP

然后就可以执行对应的创建和删除命令了:

创建:kubectl create -f svc-nginx.yaml

删除:kubectl delete -f svc-nginx.yaml

二、pod详解

pod的资源清单
apiVersion: v1     #必选,版本号,例如v1
kind: Pod         #必选,资源类型,例如 Pod
metadata:         #必选,元数据name: string     #必选,Pod名称namespace: string  #Pod所属的命名空间,默认为"default"labels:           #自定义标签列表- name: string                 
spec:  #必选,Pod中容器的详细定义containers:  #必选,Pod中容器列表- name: string   #必选,容器名称image: string  #必选,容器的镜像名称imagePullPolicy: [ Always|Never|IfNotPresent ]  #获取镜像的策略 command: [string]   #容器的启动命令列表,如不指定,使用打包时使用的启动命令args: [string]      #容器的启动命令参数列表workingDir: string  #容器的工作目录volumeMounts:       #挂载到容器内部的存储卷配置- name: string      #引用pod定义的共享存储卷的名称,需用volumes[]部分定义的的卷名mountPath: string #存储卷在容器内mount的绝对路径,应少于512字符readOnly: boolean #是否为只读模式ports: #需要暴露的端口库号列表- name: string        #端口的名称containerPort: int  #容器需要监听的端口号hostPort: int       #容器所在主机需要监听的端口号,默认与Container相同protocol: string    #端口协议,支持TCP和UDP,默认TCPenv:   #容器运行前需设置的环境变量列表- name: string  #环境变量名称value: string #环境变量的值resources: #资源限制和请求的设置limits:  #资源限制的设置cpu: string     #Cpu的限制,单位为core数,将用于docker run --cpu-shares参数memory: string  #内存限制,单位可以为Mib/Gib,将用于docker run --memory参数requests: #资源请求的设置cpu: string    #Cpu请求,容器启动的初始可用数量memory: string #内存请求,容器启动的初始可用数量lifecycle: #生命周期钩子postStart: #容器启动后立即执行此钩子,如果执行失败,会根据重启策略进行重启preStop: #容器终止前执行此钩子,无论结果如何,容器都会终止livenessProbe:  #对Pod内各容器健康检查的设置,当探测无响应几次后将自动重启该容器exec:         #对Pod容器内检查方式设置为exec方式command: [string]  #exec方式需要制定的命令或脚本httpGet:       #对Pod内个容器健康检查方法设置为HttpGet,需要制定Path、portpath: stringport: numberhost: stringscheme: stringHttpHeaders:- name: stringvalue: stringtcpSocket:     #对Pod内个容器健康检查方式设置为tcpSocket方式port: numberinitialDelaySeconds: 0       #容器启动完成后首次探测的时间,单位为秒timeoutSeconds: 0          #对容器健康检查探测等待响应的超时时间,单位秒,默认1秒periodSeconds: 0           #对容器监控检查的定期探测时间设置,单位秒,默认10秒一次successThreshold: 0failureThreshold: 0securityContext:privileged: falserestartPolicy: [Always | Never | OnFailure]  #Pod的重启策略nodeName: <string> #设置NodeName表示将该Pod调度到指定到名称的node节点上nodeSelector: obeject #设置NodeSelector表示将该Pod调度到包含这个label的node上imagePullSecrets: #Pull镜像时使用的secret名称,以key:secretkey格式指定- name: stringhostNetwork: false   #是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络volumes:   #在该pod上定义共享存储卷列表- name: string    #共享存储卷名称 (volumes类型有很多种)emptyDir: {}       #类型为emtyDir的存储卷,与Pod同生命周期的一个临时目录。为空值hostPath: string   #类型为hostPath的存储卷,表示挂载Pod所在宿主机的目录path: string                #Pod所在宿主机的目录,将被用于同期中mount的目录secret:          #类型为secret的存储卷,挂载集群与定义的secret对象到容器内部scretname: string  items:     - key: stringpath: stringconfigMap:         #类型为configMap的存储卷,挂载预定义的configMap对象到容器内部name: stringitems:- key: stringpath: string

在这里,可通过一个命令来查看每种资源的可配置项#   kubectl explain 资源类型         

查看某种资源可以配置的一级属性#   kubectl explain 资源类型.属性     查看属性的子属性

[root@k8s-master01 ~]# kubectl explain pod
KIND:     Pod
VERSION:  v1
FIELDS:apiVersion   <string>kind <string>metadata     <Object>spec <Object>status       <Object># 查看子属性[root@k8s-master01 ~]# kubectl explain pod.metadata
KIND:     Pod
VERSION:  v1
RESOURCE: metadata <Object>
FIELDS:annotations  <map[string]string>clusterName  <string>creationTimestamp    <string>deletionGracePeriodSeconds   <integer>deletionTimestamp    <string>finalizers   <[]string>generateName <string>generation   <integer>labels       <map[string]string>managedFields        <[]Object>name <string>namespace    <string>ownerReferences      <[]Object>resourceVersion      <string>selfLink     <string>uid  <string>

在kubernetes中基本所有资源的一级属性都是一样的,主要包含5部分

1、apiVersion 版本,由kubernetes内部定义,版本号必须可以用 kubectl api-versions 查询到

2、kind 类型,由kubernetes内部定义,版本号必须可以用 kubectl api-resources 查询到

3、metadata 元数据,主要是资源标识和说明,常用的有name、namespace、labels等

4、spec描述,这是配置中最重要的一部分,里面是对各种资源配置的详细描述

5、status状态信息,里面的内容不需要定义,由kubernetes自动生成

上面的属性中,spec是接下来研究的重点,继续看下它的常见子属性:

1、containers <[]Object> 容器列表,用于定义容器的详细信息

2、nodeName 根据nodeName的值将pod调度到指定的Node节点上

3、nodeSelector <map[]> 根据NodeSelector中定义的信息选择将该Pod调度到包含这些label的Node 上

4、hostNetwork 是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络

5、volumes <[]Object> 存储卷,用于定义Pod上面挂载的存储信息

6、restartPolicy 重启策略,表示Pod在遇到故障的时候的处理策略

pod配置

本小节主要来研究pod.spec.containers属性,这也是pod配置中最为关键的一项配置。

[root@master01 ~]# kubectl explain pod.spec.containers
KIND:     Pod
VERSION:  v1
RESOURCE: containers <[ ]Object>   # 数组,代表可以有多个容器
FIELDS:name  <string>     # 容器名称image <string>     # 容器需要的镜像地址imagePullPolicy  <string> # 镜像拉取策略 command  <[ ]string> # 容器的启动命令列表,如不指定,使用打包时使用的启动命令args     <[ ]string> # 容器的启动命令需要的参数列表env      <[ ]Object> # 容器环境变量的配置ports    <[ ]Object>     # 容器需要暴露的端口号列表resources <Object>      # 资源限制和资源请求的设置
基本配置

创建pod-base.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:name: pod-basenamespace: testlabels:user: user1
spec:containers:- name: nginximage: nginx:1.17.1- name: busybox
image: busybox:1.30

上面定义了一个比较简单Pod的配置,里面有两个容器:

nginx:用1.17.1版本的nginx镜像创建,(nginx是一个轻量级web容器)

busybox:用1.30版本的busybox镜像创建,(busybox是一个小巧的linux命令集合)

[root@master ~]# kubectl create -f pod-base.yaml 
pod/pod-base created
[root@master ~]# kubectl get pod -n test
NAME       READY   STATUS              RESTARTS   AGE
pod-base   0/2     ContainerCreating   0          12s
镜像拉取

创建pod-imagepullpolicy.yaml文件:

apiVersion: v1
kind: Pod
metadata:name: pod-imagepullpolicynamespace: test
spec:containers:- name: nginximage: nginx:1.17.1imagePullPolicy: Never- name: busybox
image: busybox:1.30

imagePullPolicy,用于设置镜像拉取策略,kubernetes支持配置三种拉取策略:

  • Always:总是从远程仓库拉取镜像(一直远程下载)
  • IfNotPresent:本地有则使用本地镜像,本地没有则从远程仓库拉取镜像(本地有就本地 本地没远程下载)
  • Never:只使用本地镜像,从不去远程仓库拉取,本地没有就报错 (一直使用本地)

默认值说明:

如果镜像tag为具体版本号, 默认策略是:IfNotPresent

如果镜像tag为:latest(最终版本) ,默认策略是always

启动命令

在前面的案例中,一直有一个问题没有解决,就是的busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?

原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。

创建pod-command.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:name: pod-command1namespace: test
spec:containers:- name: nginximage: nginx:1.17.1imagePullPolicy: Never- name: busybox
image: busybox:1.30
imagePullPolicy: Never
command: ["/bin/sh","-c","touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;"]

command,用于在pod中的容器初始化完毕之后运行一个命令。

稍微解释下上面命令的意思:

“/bin/sh”,“-c”, 使用sh执行命令;

touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件;

while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间。

此时再去查看

[root@master ~]# kubectl create -f pod-command.yaml 
pod/pod-command1 created
[root@master ~]# kubectl get pods -n test
pod-command1           2/2     Running             0               2s

进入pod中的busybox容器,查看文件内容

补充一个命令: kubectl exec  pod名称 -n 命名空间 -it -c 容器名称 /bin/sh  在容器内部执行命令

使用这个命令就可以进入某个容器的内部,然后进行相关操作了

比如,可以查看txt文件的内容

[root@master ~]# kubectl exec pod-command1 -n test -it -c busybox /bin/sh
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl exec [POD] -- [COMMAND] instead.
/ # tail -f /tmp/hello.txt
17:22:11
17:22:14
17:22:17
17:22:20
17:22:23
17:22:26

特别说明:

        通过上面发现command已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个args选项,用于传递参数呢?这其实跟docker有点关系,kubernetes中的command、args两项其实是实现覆盖Dockerfile中ENTRYPOINT的功能。

  • 如果command和args均没有写,那么用Dockerfile的配置。
  • 如果command写了,但args没有写,那么Dockerfile默认的配置会被忽略,执行输入的command。
  • 如果command没写,但args写了,那么Dockerfile中配置的ENTRYPOINT的命令会被执行,使用当前args的参数。
  • 如果command和args都写了,那么Dockerfile的配置被忽略,执行command并追加上args参数。
环境变量

创建pod-env.yaml文件:

apiVersion: v1
kind: Pod
metadata:name: pod-envnamespace: test
spec:containers:- name: busyboximage: busybox:1.30imagePullPolicy: Nevercommand: ["/bin/sh","-c","while true;do /bin/echo $(date +%T);sleep 60; done;"]env:- name: "username"value: "admin"- name: "password"value: "redhat"

env,环境变量,用于在pod中的容器设置环境变量

[root@master ~]# kubectl create -f pod-env.yaml 
pod/pod-env created
pod-env                1/1     Running            0               16s
[root@master ~]# kubectl exec pod-env -n test -c busybox -it /bin/sh
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl exec [POD] -- [COMMAND] instead.
/ # echo $username
admin
/ # echo $password
redhat
/ #

这种方式不是很推荐,推荐将这些配置单独存储在配置文件中,这种方式将在以后介绍。

端口配置

现在来介绍容器的端口设置,也就是containers的ports选项。

首先看下ports支持的子选项:

[root@k8s-master01 ~]# kubectl explain pod.spec.containers.ports
KIND:     Pod
VERSION:  v1
RESOURCE: ports <[ ]Object>
FIELDS:name         <string>  # 端口名称,如果指定,必须保证name在pod中是唯一的		containerPort<integer> # 容器要监听的端口(0<x<65536)hostPort     <integer> # 容器要在主机上公开的端口,如果设置,主机上只能运行容器的一个副本(一般省略) hostIP       <string>  # 要将外部端口绑定到的主机IP(一般省略)protocol     <string>  # 端口协议。必须是UDP、TCP或SCTP。默认为“TCP”

接下来,编写一个测试案例,创建pod-ports.yaml:

apiVersion: v1
kind: Pod
metadata:name: pod-portsnamespace: test
spec:containers:- name: nginximage: nginx:1.17.1imagePullPolicy: Neverports:- name: nginx-portcontainerPort: 80protocol: TCP[root@master ~]# kubectl create -f pod-ports.yaml 
pod/pod-ports created
[root@master ~]# kubectl get pod -n test
pod-ports              1/1     Running            0                10s# 查看
[root@master ~]# kubectl get pod pod-ports -n test -o yaml
......
spec:containers:- image: nginx:1.17.1imagePullPolicy: Nevername: nginxports:- containerPort: 80name: nginx-portprotocol: TCP

访问容器中的程序需要使用的是Podip:containerPort

[root@master ~]# kubectl get pod pod-ports -n test -o wide
NAME        READY   STATUS    RESTARTS   AGE     IP            NODE    NOMINATED NODE   READINESS GATES
pod-ports   1/1     Running   0          3m40s   10.244.1.16   node1   <none>           <none>
[root@master ~]# curl http://10.244.1.16:80
资源配额

容器中的程序要运行,肯定是要占用一定资源的,比如cpu和内存等,如果不对某个容器的资源做限制,那么它就可能吃掉大量资源,导致其它容器无法运行。针对这种情况,kubernetes提供了对内存和cpu的资源进行配额的机制,这种机制主要通过resources选项实现,他有两个子选项:

  • limits:用于限制运行时容器的最大占用资源,当容器占用资源超过limits时会被终止,并进行重启
  • requests :用于设置容器需要的最小资源,如果环境资源不够,容器将无法启动

可以通过上面两个选项设置资源的上下限。

接下来,编写一个测试案例,创建pod-resources.yaml:

apiVersion: v1
kind: Pod
metadata:name: pod-resourcesnamespace: test
spec:containers:- name: nginximage: nginx:1.17.1imagePullPolicy: Neverresources:       //资源限制limits:     //资源限制(上限)cpu: "2"     //cpu限制,单位是core数memory: "10Gi"   //内存限制requests:     //请求资源cpu: "1"     memory: "10Mi"

在这对cpu和memory的单位做一个说明:

  • cpu:core数,可以为整数或小数
  • memory: 内存大小,可以使用Gi、Mi、G、M等形式
[root@master ~]# kubectl create -f pod-resources.yaml 
pod/pod-resources created
[root@master ~]# kubectl get pods -n test
pod-resources          1/1     Running            0                10s

先停止删除该pod

[root@master ~]# kubectl delete -f pod-resources.yaml 
pod "pod-resources" deleted

再编辑pod,修改resources.requests.memory的值为10Gi

[root@master ~]# vim pod-resources.yaml[root@master ~]# kubectl create -f pod-resources.yaml
pod/pod-resources created
[root@master ~]# kubectl get pods -n test
pod-resources          0/1     Pending            0                16s# 查看详细信息
[root@master ~]# kubectl describe pod pod-resources -n test
Warning  FailedScheduling  87s   default-scheduler  0/3 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 3 Insufficient memory. preemption: 0/3 nodes are available: 1 Preemption is not helpful for scheduling, 2 No preemption victims found for incoming pod.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/446452.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot原理篇

目录 配置优先级 bean的管理 获取bean bean作用域 第三方bean 法一 法二 SpringBoot原理 起步依赖 自动配置 概述 方案 ComponentScan 组件扫描 lmport 导入 原理分析 源码跟踪 Conditional 案例 配置优先级 虽然springboot支持多种格式配置文件&#xff0c…

Python画笔案例-081 绘制 3D红球

1、绘制 3D红球 通过 python 的turtle 库绘制 3D红球,如下图: 2、实现代码 绘制 3D红球,以下为实现代码: """3D红球.py本程序不断地打直径越来越小,亮度越来越高的圆点。最后就形成了有种3D效果的圆球。 """ import turtle from coloradd …

亚马逊测评:虚拟支付卡的使用

在亚马逊测评自养号体系中&#xff0c;虚拟支付卡的使用越来越普遍&#xff0c;成为了一种重要的支付工具。以下是对虚拟支付卡的详细分析&#xff0c;包括其背景、使用方式、优势以及注意事项。 一、为什么要使用虚拟支付卡 亚马逊平台对支付方式有严格的规定&#xff0c;要求…

C# (.net6)实现Redis发布和订阅简单案例

概念&#xff1a; 在 .NET 6 中使用 Redis 的/订发布阅模式。发布/订阅&#xff08;Pub/Sub&#xff09;是 Redis 支持的一种消息传递模式&#xff0c;其中一个或多个发布者向一个或多个订阅者发送消息,Redis 客户端可以订阅任意数量的频道。 多个客户端可以订阅一个相同的频道…

geometry()、frameGeometry()、pos()、size()、rect()的区别

QWidget为单独的窗口展示 QWidget的这几个方法都与窗口的几何信息有关&#xff0c;作为单独的窗口展示时&#xff0c;我们来看一下他们的一些区别 geometry()&#xff1a;获取的矩形不包括窗口自带的标题栏&#xff0c;只包括窗口的内容区frameGeometry()&#xff1a;获取的矩…

Spring Boot知识管理系统:技术与方法论

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统&#xff0c;它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等&#xff0c;非常适…

昇思MindSpore进阶教程--数据处理性能优化(中)

大家好&#xff0c;我是刘明&#xff0c;明志科技创始人&#xff0c;华为昇思MindSpore布道师。 技术上主攻前端开发、鸿蒙开发和AI算法研究。 努力为大家带来持续的技术分享&#xff0c;如果你也喜欢我的文章&#xff0c;就点个关注吧 shuffle性能优化 shuffle操作主要是对有…

vue3中HTML标签元素使用ref的作用

首先我们需要两个界面 APP.vue主界面 <template><!-- html --><div class"app"><h1 ref"title">您好啊&#xff01;</h1><button click"printTitle">点我</button> <refTest/></div> &…

【无人机设计与控制】PID_积分滑模_积分反步四旋翼无人机轨迹跟踪控制算法

摘要 本文基于四旋翼无人机设计与控制&#xff0c;提出了一种结合PID控制、积分滑模控制以及积分反步控制的轨迹跟踪算法。该算法通过调节无人机的运动轨迹&#xff0c;提升其在复杂环境下的稳定性与抗扰动能力。实验结果表明&#xff0c;该算法能有效改善无人机的轨迹跟踪精度…

Python Django 查询集的延迟加载特性

Django 查询集的延迟加载特性 一、引言 在 Django 的开发过程中&#xff0c;查询集&#xff08;QuerySet&#xff09;是我们与数据库进行交互的重要工具。查询集提供了一种高效的方式来检索和操作数据库中的数据&#xff0c;且能够进行懒加载&#xff08;Lazy Loading&#x…

Element中el-table组件设置max-height右侧出现空白列的解决方法

之前就出现过这个情况&#xff0c;没理过&#xff0c;因为不影响啥除了不美观...但今天看着实在是难受&#xff0c;怎么都不顺眼(可能是我自己烦躁--) 试了很多网上的方法&#xff0c;都不得行&#xff0c;后面发现了这篇文章&#xff0c;解决了! 感谢&#xff01; Element中t…

【数据结构】:破译排序算法--数字世界的秩序密码(一)

文章目录 一.排序算法概述1.定义和目的2.排序算法的分类2.1比较排序2.2非比较排序 二.插入排序算法1.InsertSort直接插入排序1.1.插入排序原理1.2.插入排序过程1.3.代码实现1.4.复杂度和稳定性 2.ShellSort希尔排序2.1.希尔排序原理2.2.希尔排序过程2.3.代码实现2.4.复杂度和稳…

【.net core使用minio大文件分片上传】.net core使用minio大文件分片上传以及断点续传、秒传思路

版本&#xff1a;.net core 7 需求&#xff1a;net限制了上传的大小&#xff0c;只能上传25M上下的文件&#xff0c;如果上传一个八十多兆的文件&#xff0c;swagger接口报错&#xff0c;如果前端调用上传接口&#xff0c;会报CORS跨域错误&#xff0c;这篇文章介绍怎么使用分片…

使用CSS和HTML实现3D图片环绕效果

使用CSS和HTML实现3D图片环绕效果 在本篇博客中&#xff0c;将介绍如何使用HTML和CSS实现一个3D图片环绕效果。这个效果不仅具有视觉吸引力&#xff0c;而且具有高度的互动性&#xff0c;鼠标悬停时动画会暂停。接下来将一步步讲解这个效果的实现过程。 1. 效果 2. 页面结构与…

【华为HCIP实战课程十一】OSPF网络NBMA网络解决方案,网络工程师

上节我们讲解了DR DBR 选举,每台设备可以学到全网路由,但是通信是有问题的 DR BDR的选举是基于接口的,而不是基于路由器的 一、OSPF路由通信问题 R5虽然可以学到全网的OSPF路由,但是R5无法ping通44.1.1.1 原因是R5到达R4 lo0的下一跳是10.1.1.4, 而R5和R4直连无法ping通…

数码准备记录

1.数据结构 常见的数据结构包括数组、链表、栈、队列、树&#xff08;如二叉树、B树、B树&#xff09;、图等 2.队列和栈的区别 队列是一种先入先出的数据结构&#xff0c;即最先加入的元素被最先移除&#xff1b; 栈是一种后进后出的数据结构&#xff0c;即最后加入的元素…

linux tar 打包文件去掉文件所在路径

一、准备目录 /root/tmp/images /root/tmp/images2 执行命令打包目录/root/tmp/images 到 /root/tmp/images.tar.gz 再解压到/root/tmp/images2 cd /root/tmp/images && tar -cvzf images.tar.gz * && mv images.tar.gz /root/tmp/ tar -C /root/tmp/image…

JDK17常用新特性

目前国内大部分开发人员都是在使用jdk8&#xff0c;甚至是jdk6&#xff0c;但是随着jdk的更新迭代&#xff0c;jdk8我觉得可能就会慢慢的淡出舞台&#xff0c;随着目前主流框架最新版推出明确说明了不再支持jdk8&#xff0c;也促使我不得不抓紧学习了解一波jdk17的新特性&#…

多线程-初阶(2)BlockingQueueThreadPoolExecutor

学习目标&#xff1a; 熟悉wait和notify的线程休眠和启动 熟悉多线程的基本案例 1.单例模式的两种设置模式:懒汉模式和饿汉模式 2.阻塞队列(生产者消费者模型) 3.线程池 4.定时器 1.wait和notify 由于线程之间是抢占式执⾏的, 因此线程之间执⾏的先后顺序难以预知. 但是…

【消息队列】Kafka从入门到面试学习总结

国科大学习生活&#xff08;期末复习资料、课程大作业解析、大厂实习经验心得等&#xff09;: 文章专栏&#xff08;点击跳转&#xff09; 大数据开发学习文档&#xff08;分布式文件系统的实现&#xff0c;大数据生态圈学习文档等&#xff09;: 文章专栏&#xff08;点击跳转&…