科技云报到:大模型时代下,向量数据库的野望

科技云报到原创。


自ChatGPT爆火,国内头部平台型公司一拥而上,先后发布AGI或垂类LLM,但鲜有大模型基础设施在数据层面的进化,比如向量数据库。

在此之前,向量数据库经历了几年的沉寂期,现在似乎终于乘着ChatGPT的东风成为资本的“宠儿”。然而,一年狂飙之后,市场逐渐退潮,因此有人质疑,向量数据库又凉了?

判断一条赛道是否真的有潜力,资本的注入虽是前提,但更重要的还有市场的态度。大模型应用的逐步落地于向量数据库而言,无疑是最好的催熟剂。

然而任何新技术的到来,都需要更长的时间才能得到市场的接受。

一份关于向量数据库的市场研究是,随着AI应用场景加速落地,据西南证券分析,预计2025年向量数据库渗透率约为30%,其中,中国向量数据库市场规模约为82.56亿元。而据中国信通院测算,到2025年,中国数据库市场规模将达688亿元。这意味着,两年后向量数据库在中国的渗透率将超过10%。

在国内,不少数据库厂商都在尝试推出向量数据库产品,然而从市场验证阶段走向实现盈利,中间还需要一段更漫长的时间。向量数据库究竟是虚火过旺还是星辰大海?在向量数据库这条赛道,能否看到更远的未来?

fcbe28de5c4e8ca9a5ef541ad9d7aca1.jpeg


向量数据库,刚刚开始

向量数据库,顾名思义,是一种专门处理向量数据的数据库。在传统的关系型数据库中,数据通常以表格形式存储,而向量数据库则将非结构化数据(如文本、图像、音频等)转换为向量形式进行存储。这种数据表示方法使得向量数据库能够高效地处理大规模、高维度的数据集,为AI提供了强大的计算基础。

如果说数据库是数据的“硬盘”,那么,向量数据库就是更适合AI体质的“硬盘”,其“AI原生”的体质,具体表现在以下几个方面。

首先,是更高的效率。AI算法,要从图像、音频和文本等海量的非结构化数据中学习,提取出以向量为表示形式的“特征”,以便模型能够理解和处理。因此,向量数据库比传统基于索引的数据库有明显优势。

其次,更低的成本。大模型要从一种新技术转化为产业价值,必须达到合理的投入产出比,而向量数据库可以有效减少存储和计算成本。一个公开数据是,通过腾讯云向量数据库,QQ音乐人均听歌时长提升3.2%、腾讯视频有效曝光人均时长提升1.74%、QQ浏览器成本降低37.9%,就在于检索效率、运行稳定性、运营效率、推荐算法等,有了较大的提升。

第三,更强的数据安全。企业想做大模型,还要确保数据的隐私安全,就必须与数据库产品做好配合,这给向量数据库的本地部署带来了广阔的需求。

第四,更大的扩展性。随着大模型走向行业应用,垂直领域的AI用例不断增多,汹涌的数据洪潮和存算任务,会带来大量向量搜索的需求。而向量数据库嵌入向量的长度不受限制,具有良好的扩展性,可以根据AI用例和模型而变化,更好地处理大规模数据集。

从大模型技术标杆的OpenAI发布的GPT-4o和即将发布的GPT-5消息来看,以及国内外商业化大模型的进展来看,大模型的技术路线还没有发生颠覆性的变革,因此落地应用还是需要向量检索和向量数据库。

由此可见,向量数据库与AI的关系紧密相连。在大模型兴起之前,传统数据库已经在不断尝试与AI结合,主要涉及以下几个方向:数据存储与管理、数据清洗与预处理、数据检索与查询、数据集成与共享、数据安全与隐私保护。随着大模型的兴起,可以看到在这些方向上,数据库与AI间的关联比以往任何时候都要密切。

此外,AI 大模型的兴起还为数据库注入了预测估算的能力。AI模型可以通过学习历史数据和模式,对未来的趋势和结果进行预测和估算。传统数据库可以集成AI模型,实现对数据的预测分析。这使得数据库可以不仅提供对历史数据的查询和分析,还能够提供对未来数据的预测和估算结果,帮助用户做出更准确的决策。

总的来说,几乎所有类型的数据库都在积极向AI靠拢,比如在数据库中添加向量索引,数据库和AI已经密不可分,两者相辅相成,共同推动着技术的进步和应用的拓展。

76fd033d083057560ef071ce0ee86599.jpeg


两大新势力,云是方向

传统数据库厂商不必多说,既有相应的能力建设,也有一定的客户基础,推出相关产品是必然。一些在AI领域积淀已久的科技大厂,如谷歌、微软、Meta、百度等大厂,都有向量数据库的技术积累,也都可以向外输出相关能力和产品。

除了这些常规面孔,向量数据库市场也吸引了新的参与者。作为这一轮大模型投资热和创业热的主要目标之一,向量数据库领域诞生了不少创新创业公司。比如AI创业新秀Pinecone就是闭源的领跑者,凭借良好的开箱即用的产品体验,获得了非常大的增长,B轮估值达到7.5亿美元。其他竞争者大多建立在开源项目的基础上。

不过,作为创业公司,长期盈利能力还有待验证。一个主要原因,是客户大多是尝鲜、实验性质。

企业需要先将非结构化的私密数据,放入一个小的模型中进行数据转化,即数据向量化,产生一个向量的矩阵,再存储到向量数据库里,来供大模型学习和检索。这个过程涉及大量的工程化,会耗费企业许多开发人员、时间成本,一开始可能会因为AI大模型很火而对向量数据库产生兴趣,但能否真正在业务中落地还是个未知数。因此,长期付费意愿还有较大的不确定性。

另一股积极参与的新势力,就是公有云厂商。

从2017年到2019年,于向量数据库的发展而言,是一段更为重要的时间。腾讯云、百度智能云、京东科技等也恰都是在这个时间段将向量数据库的相关组件应用到具体的业务之上。

实际上,这段时间所对应的背景也正是,非结构化数据需求的激增。

一个具有代表性的事件是,2017年,短视频的爆火,催生了新媒体行业,各种结构数据也随之出现。这一现象就导致了不同结构数据的处理需求。

除此之外,京东、腾讯和百度的内部产品也有更多类似的需求。而向量化引擎也正是从这一时间点开始萌芽。

事实上,不是所有企业都有能力自建大模型所需要的基础设施,通过MaaS(模型即服务)业务来训练应用大模型,是更灵活的选择。此外,很多政企客户往往会选择公有云或行业云来满足其业务需求,对云数据库的关注度和接受度上升,而这些用户在探索大模型时,会倾向于以整体解决方案的形式来交付,这就给了云厂商参与到此赛道机会,同时也要求云厂商提供向量数据库的全栈支持。

如今头部云厂商基本建立了全生命周期AI化的向量数据库。有数据显示,企业原先接入一个大模型需要花1个月左右时间,使用某公有云的向量数据库后,3天时间即可完成,极大降低了企业的接入成本。

更何况,前不久火山引擎、阿里云、百度智能云等都围绕大模型API价格,打起了互相抄底的“价格战”,意味着AI创新门槛的降低,而AI应用市场的用户规模扩大,也会带动向量数据库的使用需求。

综合来看,整个云AI市场的格局还在快速变化之中,风物长宜放眼量,AI Native的向量数据库,前景仍然值得期待。


向量数据库,展望AGI时代

从某种程度上而言,无论是向量数据库,还是大模型,归根结底,大家在追捧它时的心态,焦虑大于需求。而这种焦虑则来源于“害怕被落下”。

大模型、多模态等新技术、新应用的出现,正在迅速刷新着人们对AGI时代的期待,仿佛它下一刻就会到来。

而向量数据库的热潮,在一定程度上“外化”了人们的焦虑。但这并不能否定向量数据库的实际价值,甚至更长远的价值。

虽然,目前向量数据库仍处于发展初期,但可以确定的是,向量数据库与大模型一定是捆绑关系。因此,未来其演进方向也一定随着大模型能力的演进而发生变化。

腾讯云数据库副总经理罗云认为,向量数据库帮助大模型解决在专有领域知识不足的问题。通用大模型是基于海量的互联网业务和数据去训练的,但对于一些细分的垂直行业缺少知识。而向量数据库可以帮助企业打通企业私有知识库和大模型的连接,帮助企业更好地利用大模型等AI新技术去实现企业的降本增效,推动企业从“数字化”到“数智化”的跃升,这就是向量数据库在AI时代的重要的定位和价值。

cff54bd2624db77abb6ffc3baffb5ae4.jpeg

而在具体的演进方向上,向量数据库一定会考虑多模态数据的表达以及数据的智能化管理。

首先,在大模型应用百花齐放的背景下,向量数据库对于多模态数据的处理意义,变得十分重要。

罗云进一步举例,比如某教育客户,把一些线下的教育课程,甚至老师上课的教育提纲,全部作为向量,存储到腾讯云的向量数据库里。当家长想要去咨询某节课老师讲了什么,就可以把存储在向量数据库里面内容检索出来,再交给大模型按照人们能理解的语言来回答,这就将向量数据库与大模型进行了很好的匹配。

如果没有向量数据库参与,以及没有合理的多模态数据处理方式,这种情况下是无法查询出这些数据的。

但随着多模态数据规模上的提升,另一个问题也随之出现。不同数据库中数据如何将其统一管理并让数据流通起来,这就涉及到的智能化管理也是向量数据库未来的发力点。

向量数据库作为处理多样性和复杂性数据挑战的得力工具,为各行业提供了高效、灵活的数据管理解决方案。其高维索引、相似性查询、向量聚合等特点,使其在推荐系统、搜索引擎、社交媒体分析、生物信息学和图像视频分析等多个领域得到了成功应用。

不可否认,向量数据库的未来既蕴含着广阔的发展空间,也面临着诸多挑战。得益于大模型火热,向量数据库已逐渐成为资本市场的青睐之选。在未来的AGI道路上,向量数据库仍需要砥砺前行。


【关于科技云报到】

企业级IT领域Top10新媒体。聚焦云计算、人工智能、大模型、网络安全、大数据、区块链等企业级科技领域。原创文章和视频获工信部权威认可,是世界人工智能大会、数博会、国家网安周、可信云大会与全球云计算等大型活动的官方指定传播媒体之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/448007.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python 位运算 笔记

起因, 目的: 位运算,令我头疼的地方。算法题里面也是经常见到。 位运算。 按位或,OR, | , 只要有一个为1, 结果就是1,否则为0按位异或,XOR, ^, 2个数不同,结果为1, 否则为0&#…

一文介绍SQL标准1986~2023的演变

SQL标准1986年制定第一版,到最新的2023版,已经有38年的历史,现在依然是计算机非常活跃的语言,50%的程序员都能掌握SQL,数据分析师也是SQL的主要使用人员之一。 从早期的基本语法,到融合了XML、JSON等复杂数…

【Matlab 六自由度机器人】笛卡尔空间规划和关节空间规划(附MATLAB建模代码)

笛卡尔空间规划和关节空间规划 近期更新前言正文1. 笛卡尔空间规划特点:步骤: 2. 关节空间规划特点:步骤: 3. 两种方法的区别4. MATLAB代码:机械臂避障路径规划问题和解答4.1 关节空间规划方法4.2 笛卡尔空间规划方法4…

Java中关于算数运算符的理解

在Java中基本的算数运算符有五类 加减-乘*在编程语言中乘号一律写为 *除/在Java中两个整数相除结果还是整数取余%取得的是两个数相除的余数 这里可以看见,在输出加法和减法时,我在后面多加了一个括号,这是因为运算优先级的原因,加…

105. 从前序与中序遍历序列构造二叉树【 力扣(LeetCode) 】

文章目录 零、LeetCode 原题一、题目描述二、测试用例三、解题思路四、参考代码 零、LeetCode 原题 105. 从前序与中序遍历序列构造二叉树 一、题目描述 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的…

Hadoop集群安装

集群规划 node01node02node03角色主节点从节点从节点NameNode√DataNode√√√ResourceManager√NodeManager√√√SecondaryNameNode√Historyserver√ 上传安装包到node01 解压到指定目录 tar -zxvf /bigdata/soft/hadoop-3.3.3.tar.gz -C /bigdata/server/ 创建软链接 cd…

基于Spring Boot的医疗病历B2B平台开发策略

第4章 系统设计 4.1 系统总体设计 系统不仅要求功能完善,而且还要界面友好,因此,对于一个成功的系统设计,功能模块的设计是关键。由于本系统可执行的是一般性质的学习信息管理工作,本系统具有一般适用性,其…

49 | 桥接模式:如何实现支持不同类型和渠道的消息推送系统?

上一篇文章我们学习了第一种结构型模式:代理模式。它在不改变原始类(或者叫被代理类)代码的情况下,通过引入代理类来给原始类附加功能。代理模式在平时的开发经常被用到,常用在业务系统中开发一些非功能性需求&#xf…

Docker consul注册中心

一、consul 1.1、什么是服务注册与发现 服务注册与发现是微服务架构中不可或缺的重要组件。 起初服务都是单节点的,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问。 直到后来出现了多个节点的分布式架构&#x…

如何看一个flutter项目的具体flutter版本

查看pubspec.lock文件 这个项目实际运行的就是 flutter 3.16.6 版本的

模电板测试分析报告【积分/微分电路】

积分电路常用于波形转换,如将矩形波变三角波。对正弦波积分可以实现相移。 微分电路: 为什么直接串联0.1uF电容到反馈线上去: 整改:这么看的话原理图中C58应该换成电阻的。 积分电路下图中红色的换成电容就可以变成微分电路了。 从…

八、随机名字功能

摘要: XML在C#与Unity3D中的实战运用 - PlaneZhong - 博客园 (cnblogs.com) 读取策划提供的配置文件。 策划提供一份execel文档,程序将它转化为一个配置文件(xml) 首先: XML是一个可扩展标记的语言 一、转换方法…

VSCode运行QT界面

VSCode用久了,感觉Qt Creator的写起代码来还是不如VSCode得心应手,虽然目前还是存在一些问题,先把目前实现的状况做个记录,后续有机会再进一步优化。 当前方式 通过QtCreator创建一个CMake项目,然后使用CMake的方式在VSCode中进行编译。 claude给出的建议 左上角的名字会…

Node.js管理工具NVM

nvm(Node Version Manager)是一个用于管理多个 Node.js 版本的工具。以下是 nvm 的使用方法和一些常见命令: 一、安装 nvm 下载 nvm: 地址:https://github.com/coreybutler/nvm-windows/releases访问 nvm 的 GitHub 仓…

【C语言】你不知道的知识小盲区——柔性数组

文章目录 一、什么是柔性数组二、柔性数组的特点三、柔性数组的使用四、柔性数组的优势 一、什么是柔性数组 也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。在C99标准中,如果结构体的最后一个成员是…

sqli-labs less-26 空格绕过

空格绕过 过滤空格 用Tab代替空格%20 %09 %0a %0b %0c %0d %a0 //() 绕过空格注释符绕过//–%20//#–- -;%00; 空白字符绕过SQLite3 —— 0A,0D,0c,09,20 MYSQL 09,0A,0B,0B,0D,A0,20 PosgressSQL 0A,0D,0C,09,20 Oracle_11g 00,0A,0D,0C,09,20 MSSQL 01,02,03,04,05,06,07,…

[瑞吉外卖]-05菜品模块

文件上传下载 介绍 文件上传也称为upload,是指将本地图片、视频、音频等文件上传到服务器上, 可以供其他用户浏览或下载 前端组件库提供了上传组件,但是底层原理还是基于form表单的文件上传。 服务端要接收客户端上传的文件,通常都会使用Ap…

一次Fegin CPU占用过高导致的事故

记录一下 一次应用事故分析、排查、处理 背景介绍 9号上午收到CPU告警,同时业务反馈依赖该服务的上游服务接口响应耗时太长 应用告警-CPU使用率 告警变更 【WARNING】项目XXX,集群qd-aliyun,分区bbbb-prod,应用customer,实例customer-6fb6448688-m47jz, POD实例CP…

Web集群服务-Nginx

1. web服务 1. WEB服务:网站服务,部署并启动了这个服务,你就可以搭建一个网站 2. WEB中间件: 等同于WEB服务 3. 中间件:范围更加广泛,指的负载均衡之后的服务 4. 数据库中间件:数据库缓存,消息对列 2. 极速上手指南 nginx官网: nginx documentation 2.1 配置yum源 vim /etc/…

HTML基础知识

介绍 HTML(HyperText Markup Language,超文本标记语言)是一种用于创建网页的标准标记语言。它描述了一个网站的结构骨架,使得浏览器能够展示具有特定格式的文本、链接、图片和其他内容。以下是HTML的一些基础知识: HT…