让AI像人一样思考和使用工具,reAct机制详解

reAct机制详解

  • reAct是什么
  • reAct的关键要素
  • reAct的思维过程
  • reAct的代码实现
    • 查看效果
    • 引入依赖,定义模型
    • 定义相关工具
    • 集合工具创建代理
    • 启动测试
    • 完整代码
  • 思考

reAct是什么

reAct的核心思想是将**推理(Reasoning)和行动(Acting)**结合起来。具体来说,reAct 赋予了 AI agent 思维链Cot的思考能力和使用工具Action的能力。对于一个复杂问题agent首先利用其强大的推理能力对环境进行分析和理解,识别出需要解决的问题和可用的资源。然后,它根据推理结果制定行动计划,并选择合适的工具或方法来执行计划。最后达到像人一样分析和使用工具最后解决问题的效果。

reAct的关键要素

  • 强大的推理能力
  • 丰富的工具库
  • 灵活的行动策略
  • 持续的反馈机制

reAct的思维过程

举个例子比如问模型一个问题羊村旁边的地方是什么?它的面积加上它的面积是多少?,正常模型肯定回答不了,可是添加上reAct他就被赋予了思考和使用工具获取信息的能力,分析过程大概如下:

分析1:我需要先搜索羊村旁边的地方,然后获取该地方的面积,最后计算面积的总和,首先我得先知道羊村旁边是什么地方行动1:调用地点搜索工具分析2:获取到的地点是狼堡,我需要搜索狼堡的面积,然后计算面积的总和行动2:调用地点面积搜索工具分析3:获取到面积是500,我已经获取了狼堡的面积,现在需要计算面积的总和。行动3:调用数字相加计算工具(如果数字比较复杂可能需要专业的数学工具计算)分析4:计算出结果是1000行动4:进行最终答复:羊村旁边的地方是狼堡,狼堡的面积是500,加上它的面积是1000。

就这样模型通过reAct完成了一整个复杂问题的拆解和逐步解决。我们可以通过代码来实现并查看一整个过程

reAct的代码实现

我们用langChain搭配deepseek模型去实现reAct的一整个过程,我们先来看看最终结果。

查看效果

在这里插入图片描述
可以看到利用reAct机制LLM确实跟我们预想的一样完成了推理和使用工具。下面我们来看实现。

引入依赖,定义模型

注意key换成deepseek的key

from langchain import hub
from langchain.agents import create_structured_chat_agent, AgentExecutor
from langchain.memory import ConversationBufferMemory
from langchain.tools import BaseTool
from langchain_openai import ChatOpenAImodel = ChatOpenAI(model='deepseek-chat', openai_api_key='xxx',openai_api_base='https://api.deepseek.com',max_tokens=4096
)

定义相关工具

# 定义数字计算工具
class SumNumber_tool(BaseTool):name = "数字相加计算工具"description = "当你被要求计算数字相加时,使用此工具"def _run(self, a, b):return a + b  # 直接返回两个数的和# 模拟地点搜索工具(实际使用可以调用内置的google-serper)
class PlaceSearch_tool(BaseTool):name= "地点搜索工具"description = "当你需要搜索地点时,使用这个工具"def _run(self, query):return "狼堡"# 创建地点面积搜索工具
class AreaSearch_tool(BaseTool):name= "地点面积搜索工具"description = "当你需要搜索地点面积时,使用这个工具"def _run(self, query):return 500

集合工具创建代理

# 工具集合
tools = [SumNumber_tool(), PlaceSearch_tool(), AreaSearch_tool()]
# 提示词,langchain hub内置提示词,之后文章会再做详细分析
prompt = hub.pull("hwchase17/structured-chat-agent")
# 定义AI Agent
agent = create_structured_chat_agent(llm=model,tools=tools,prompt=prompt
)
# 记录上下文
memory = ConversationBufferMemory(memory_key='chat_history',return_messages=True
)
# 创建一个代理执行器
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, memory=memory, verbose=True, handle_parsing_errors=True
)

启动测试

# 测试场景
agent_executor.invoke({"input": "羊村旁边的地方是什么?它的面积加上它的面积是多少?"}) 

完整代码

from langchain import hub
from langchain.agents import create_structured_chat_agent, AgentExecutor
from langchain.memory import ConversationBufferMemory
from langchain.tools import BaseTool
from langchain_openai import ChatOpenAI# 模型
model = ChatOpenAI(model='deepseek-chat', openai_api_key='xxx',openai_api_base='https://api.deepseek.com',max_tokens=4096
)# 定义数字计算工具
class SumNumber_tool(BaseTool):name = "数字相加计算工具"description = "当你被要求计算数字相加时,使用此工具"def _run(self, a, b):return a + b  # 直接返回两个数的和# 模拟地点搜索工具(实际使用可以调用内置的google-serper)
class PlaceSearch_tool(BaseTool):name= "地点搜索工具"description = "当你需要搜索地点时,使用这个工具"def _run(self, query):return "狼堡"# 创建地点面积搜索工具
class AreaSearch_tool(BaseTool):name= "地点面积搜索工具"description = "当你需要搜索地点面积时,使用这个工具"def _run(self, query):return 500# 工具集合
tools = [SumNumber_tool(), PlaceSearch_tool(), AreaSearch_tool()]
# 提示词,langchain hub内置提示词,之后文章会再做详细分析
prompt = hub.pull("hwchase17/structured-chat-agent")
# 定义AI Agent
agent = create_structured_chat_agent(llm=model,tools=tools,prompt=prompt
)
# 记录上下文
memory = ConversationBufferMemory(memory_key='chat_history',return_messages=True
)
# 创建一个代理执行器
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, memory=memory, verbose=True, handle_parsing_errors=True
)# 测试场景
agent_executor.invoke({"input": "羊村旁边的地方是什么?它的面积加上它的面积是多少?"})

思考

reAct是AI agent很重要的一个概念,它赋予了agent能够逐步推理和执行任务的能力。通过将复杂的任务分解为一系列简单的步骤,并通过使用工具去解决问题,让agent能够更高效地解决问题,最终让agent像人一样能够处理复杂问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/448030.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索人工智能:深度解析未来科技的核心驱动力

目录 🍔 人工智能的应用方向 🍔 人工智能的发展历史 🍔 人工智能、机器学习、深度学习关系 🍔 为什么学习机器学习? 🍔 小节 学习目标 🍀 了解人工智能的应用方向 🍀 了解人工智…

【千库网-注册安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

iPad备份软件哪个好?好用的苹果备份软件推荐

苹果手机在将数据备份到电脑时,需要通过第三方的管理软件,才可以将手机连接到电脑进行备份。苹果手机备份软件有很多,常用的有:爱思助手、iMazing、iTuns等。那么这三款常用的备份软件究竟哪款更好呢?下面就给大家盘点…

uniapp学习(004-2 组件 Part.2生命周期)

零基础入门uniapp Vue3组合式API版本到咸虾米壁纸项目实战,开发打包微信小程序、抖音小程序、H5、安卓APP客户端等 总时长 23:40:00 共116P 此文章包含第31p-第p35的内容 文章目录 组件生命周期我们主要使用的三种生命周期setup(创建组件时执行)不可以操作dom节点…

Kimi AI助手重大更新:语音通话功能闪亮登场!

Kimi人工智能助手近日发布了一项令人瞩目的重大更新,其中最引人注目的是新增的语音通话功能。这一创新不仅拓展了用户与AI互动的方式,还为学习和工作场景提供了突破性的解决方案。 Ai 智能办公利器 - Ai-321.com 人工智能 - Ai工具集 - 全球热门人工智能…

使用 python 下载 bilibili 视频

本文想要达成的目标为:运行 python 代码之后,在终端输入视频链接,可自动下载高清 1080P 视频并保存到相应文件夹。 具体可分为两大步:首先,使用浏览器开发者工具 F12 获取请求链接相关信息(根据 api 接口下…

性能测试持续继承 CICD

目录 一、如何实现性能测试持续继承操作 下载ant 验证ant是否安装成功 二、jmeterant结合 1、我们需要把jmeter中extres 中的ant-jmeter-1.1.1.jar 复制到ant的安装目录中的lib目录中 2、把jmeter中extres中的build.xml 复制到ant的安装目录中的bin目录 3、编辑build.x…

uniapp 设置 tabbar 的 midButton 按钮

效果展示&#xff1a; 中间的国际化没生效&#xff08;忽略就行&#xff09; 示例代码&#xff1a; 然后在 App.vue 中进行监听&#xff1a; <script>export default {onLaunch(e) {// #ifdef APPuni.onTabBarMidButtonTap(()>{console.log("中间按钮点击回调…

Nacos安装指南

1.Windows安装 开发阶段采用单机安装即可。 1.1.下载安装包 在Nacos的GitHub页面,提供有下载链接,可以下载编译好的Nacos服务端或者源代码: GitHub主页:https://github.com/alibaba/nacos GitHub的Release下载页:https://github.com/alibaba/nacos/releases 如图: …

C1. Adjust The Presentation (Easy Version) 双指针

C1. Adjust The Presentation (Easy Version) 妈呀, 最难读懂的一道题(英语不好) 原题 思路 这道题读懂之后就是双指针. 不难想到只要之前出现过, 就一定可以展示出来, 唯一需要注意的时不能在a里有多余的科幻片 代码 #include <bits/stdc.h> #define int long long…

Python爬虫之正则表达式于xpath的使用教学及案例

正则表达式 常用的匹配模式 \d # 匹配任意一个数字 \D # 匹配任意一个非数字 \w # 匹配任意一个单词字符&#xff08;数字、字母、下划线&#xff09; \W # 匹配任意一个非单词字符 . # 匹配任意一个字符&#xff08;除了换行符&#xff09; [a-z] # 匹配任意一个小写字母 […

牛客:Holding Two,Inverse Pair,Counting Triangles

Holding Two 题目描述 登录—专业IT笔试面试备考平台_牛客网 ​​运行代码 #include<bits/stdc.h> using namespace std; const int N3e45; string s1,s2; int main(){int n,m;cin>>n>>m;for(int i0;i<m;i){if(i&1){s10;s21;} else{s11;s20;} }fo…

jvm内存溢出问题排查Java服务自动停止问题排查

Java服务自动停止&#xff0c;Java服务内存溢出问题解决记录。 过程描述 服务器上的一个项目突然服务不了了&#xff0c;登录服务器一看&#xff0c;服务被停了&#xff0c;第一反应大概率就是内存溢出导致的&#xff0c;结果查看日志没有任何报错&#xff0c;就很奇怪&#…

鸿蒙开发案例:HarmonyOS NEXT语法实现2048

【实现的功能】 • 游戏逻辑&#xff1a;实现了2048游戏的核心逻辑&#xff0c;包括初始化游戏盘面、添加随机方块、处理四个方向的滑动操作等。 • UI展示&#xff1a;构建了游戏的用户界面&#xff0c;显示得分、游戏盘面&#xff0c;并提供了重新开始按钮。 • 用户交互&…

OpenAI 公布了其新 o1 模型家族的元提示(meta-prompt)

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

出处不详 取数游戏

目录 取数游戏题目描述背景输入输出数据范围 题解解法优化 打赏 取数游戏 题目描述 背景 两人将 n n n个正整数围成一个圆环&#xff0c;规则如下&#xff1a; 第一名玩家随意选取数字&#xff1b;第二名玩家从与第一名玩家相邻的两个数字中选择一个&#xff1b;而后依次在…

科技云报到:大模型时代下,向量数据库的野望

科技云报到原创。 自ChatGPT爆火&#xff0c;国内头部平台型公司一拥而上&#xff0c;先后发布AGI或垂类LLM&#xff0c;但鲜有大模型基础设施在数据层面的进化&#xff0c;比如向量数据库。 在此之前&#xff0c;向量数据库经历了几年的沉寂期&#xff0c;现在似乎终于乘着Ch…

python 位运算 笔记

起因&#xff0c; 目的: 位运算&#xff0c;令我头疼的地方。算法题里面也是经常见到。 位运算。 按位或&#xff0c;OR, | , 只要有一个为1&#xff0c; 结果就是1&#xff0c;否则为0按位异或&#xff0c;XOR, ^, 2个数不同&#xff0c;结果为1&#xff0c; 否则为0&#…

一文介绍SQL标准1986~2023的演变

SQL标准1986年制定第一版&#xff0c;到最新的2023版&#xff0c;已经有38年的历史&#xff0c;现在依然是计算机非常活跃的语言&#xff0c;50%的程序员都能掌握SQL&#xff0c;数据分析师也是SQL的主要使用人员之一。 从早期的基本语法&#xff0c;到融合了XML、JSON等复杂数…

【Matlab 六自由度机器人】笛卡尔空间规划和关节空间规划(附MATLAB建模代码)

笛卡尔空间规划和关节空间规划 近期更新前言正文1. 笛卡尔空间规划特点&#xff1a;步骤&#xff1a; 2. 关节空间规划特点&#xff1a;步骤&#xff1a; 3. 两种方法的区别4. MATLAB代码&#xff1a;机械臂避障路径规划问题和解答4.1 关节空间规划方法4.2 笛卡尔空间规划方法4…