PCB缺陷检测数据集 xml 可转yolo格式 ,共10688张图片

PCB缺陷检测数据集(yolov5,v7,v8) 数据集总共有两个文件夹,一个是pcb整体标注,一个是pcb部分截图。 整体标注有6个分类,开路,短路等都已经标注,标注格式为xml,每个文件夹下有100多张的图片,可转yolo格式,跑过效果很好,北京大学PCB数据集。 第二个是第一个的部分和增强,共10688张图片,多篇pcb论文用的是这个数据集(共6类),训练集和检测集总共有10688张,看最后一张图。标注格式为txt,可直接yolov5,v7,v8检测。

项目概述

本数据集是一个专门用于印刷电路板(PCB)缺陷检测的数据集,包含两个主要部分:一个是整体标注的PCB图像,另一个是部分截图和增强后的图像。整体标注部分有6个分类,包括开路、短路等常见缺陷,并且已经使用XML格式进行了标注。第二个部分是对第一个部分的部分截图和增强处理,共有10688张图像,标注格式为YOLO格式(txt文件),可以直接用于YOLOv5、YOLOv7和YOLOv8模型的训练和检测。

数据集特点

  • 高质量标注:所有标注数据经过处理,确保了标注质量。
  • 多样化类别:涵盖六类常见的PCB缺陷。
  • 多用途:适用于多种目标检测任务,特别是涉及PCB缺陷检测的应用。
  • 易于使用:提供了详细的说明文档和预处理好的标注文件,方便用户快速上手。
  • 学术认可:多篇PCB相关论文使用了该数据集,具有较高的学术价值和实际应用价值。

数据集结构

PCB_Defect_Detection_Dataset/
├── full_boards/                         # 整体标注的PCB图像
│   ├── images/                          # 图像文件夹
│   │   ├── train/                       # 训练集图像
│   │   ├── val/                         # 验证集图像
│   │   └── test/                        # 测试集图像
│   ├── annotations/                     # 标注文件夹 (XML格式)
│   │   ├── train/                       # 训练集标注
│   │   ├── val/                         # 验证集标注
│   │   └── test/                        # 测试集标注
├── partial_and_augmented/               # 部分截图和增强后的图像
│   ├── images/                          # 图像文件夹
│   │   ├── train/                       # 训练集图像
│   │   ├── val/                         # 验证集图像
│   │   └── test/                        # 测试集图像
│   ├── labels/                          # 标注文件夹 (YOLO格式)
│   │   ├── train/                       # 训练集标注
│   │   ├── val/                         # 验证集标注
│   │   └── test/                        # 测试集标注
├── README.md                            # 项目说明文档
└── data.yaml                            # 数据集配置文件

数据集内容

  • 总数据量
    • 整体标注的PCB图像:每个文件夹下约100多张图像。
    • 部分截图和增强后的图像:共10688张图像。
  • 标注格式
    • 整体标注:XML格式。
    • 部分截图和增强:YOLO格式(txt文件)。
  • 标注对象:各类PCB缺陷的位置。
  • 类别及数量
类别名标注个数
开路 (Open Circuit)具体数量
短路 (Short Circuit)具体数量
缺失元件 (Missing Component)具体数量
错误元件 (Wrong Component)具体数量
裂纹 (Crack)具体数量
污染 (Contamination)具体数量
  • 总计
    • 图像总数:整体标注约600张,部分截图和增强10688张
    • 标注总数:具体数量根据实际情况而定
    • 总类别数 (nc):6类

使用说明

  1. 环境准备

    • 确保安装了Python及其相关库(如torchopencv-pythonmatplotlib等)。
    • 下载并解压数据集到本地目录。
    • 安装YOLOv5、YOLOv7或YOLOv8所需的依赖项:
       
      git clone https://github.com/ultralytics/yolov5
      cd yolov5
      pip install -r requirements.txt
  2. 加载数据集

    • 可以使用常见的编程语言(如Python)来加载和处理数据集。
    • 示例代码如下:
import os
import xml.etree.ElementTree as ET
import pandas as pd
from pathlib import Path
from yolov5.utils.datasets import LoadImages, LoadImagesAndLabels
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression, scale_coords
from yolov5.utils.torch_utils import select_device
import cv2
import numpy as np# 定义数据集路径
dataset_path = 'PCB_Defect_Detection_Dataset'# 加载整体标注的图像和标注
def load_full_boards(folder):images_folder = os.path.join(dataset_path, 'full_boards', 'images', folder)annotations_folder = os.path.join(dataset_path, 'full_boards', 'annotations', folder)dataset = []for image_file in os.listdir(images_folder):if image_file.endswith('.jpg') or image_file.endswith('.png'):image_path = os.path.join(images_folder, image_file)annotation_path = os.path.join(annotations_folder, image_file.replace('.jpg', '.xml').replace('.png', '.xml'))tree = ET.parse(annotation_path)root = tree.getroot()labels = []for obj in root.findall('object'):name = obj.find('name').textbndbox = obj.find('bndbox')xmin = int(bndbox.find('xmin').text)ymin = int(bndbox.find('ymin').text)xmax = int(bndbox.find('xmax').text)ymax = int(bndbox.find('ymax').text)labels.append([name, xmin, ymin, xmax, ymax])dataset.append({'image_path': image_path,'labels': labels})return dataset# 加载部分截图和增强后的图像和标注
def load_partial_and_augmented(folder):images_folder = os.path.join(dataset_path, 'partial_and_augmented', 'images', folder)labels_folder = os.path.join(dataset_path, 'partial_and_augmented', 'labels', folder)dataset = []for image_file in os.listdir(images_folder):if image_file.endswith('.jpg') or image_file.endswith('.png'):image_path = os.path.join(images_folder, image_file)label_path = os.path.join(labels_folder, image_file.replace('.jpg', '.txt').replace('.png', '.txt'))with open(label_path, 'r') as f:labels = [line.strip().split() for line in f.readlines()]dataset.append({'image_path': image_path,'labels': labels})return dataset# 示例:加载整体标注的训练集
full_boards_train_dataset = load_full_boards('train')
print(f"Number of training images (full boards): {len(full_boards_train_dataset)}")# 示例:加载部分截图和增强后的训练集
partial_and_augmented_train_dataset = load_partial_and_augmented('train')
print(f"Number of training images (partial and augmented): {len(partial_and_augmented_train_dataset)}")
  1. 模型训练
    • 使用预训练的YOLOv5、YOLOv7或YOLOv8模型进行微调,或者从头开始训练。
    • 示例代码如下(以YOLOv5为例):
# 设置设备
device = select_device('')# 加载预训练模型或从头开始训练
model = attempt_load('yolov5s.pt', map_location=device)  # 或者 'path/to/custom_model.pt'
model.train()# 数据集配置文件
data_yaml = 'PCB_Defect_Detection_Dataset/data.yaml'# 训练参数
hyp = 'yolov5/data/hyps/hyp.scratch.yaml'  # 超参数配置文件
epochs = 100
batch_size = 16
img_size = 640# 开始训练
%cd yolov5
!python train.py --img {img_size} --batch {batch_size} --epochs {epochs} --data {data_yaml} --weights yolov5s.pt
  1. 模型推理
    • 使用训练好的模型进行推理,并在图像上绘制检测结果。
    • 示例代码如下:
def detect(image_path, model, device, img_size=640):img0 = cv2.imread(image_path)img = letterbox(img0, new_shape=img_size)[0]img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416img = np.ascontiguousarray(img)img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# 推理with torch.no_grad():pred = model(img, augment=False)[0]# NMSpred = non_max_suppression(pred, 0.4, 0.5, classes=None, agnostic=False)for i, det in enumerate(pred):  # 每个图像的检测结果if det is not None and len(det):det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()for *xyxy, conf, cls in reversed(det):label = f'{model.names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, img0, label=label, color=(0, 255, 0), line_thickness=3)return img0# 示例:检测单张图像
result_img = detect('path/to/image.jpg', model, device)
cv2.imshow('Detection Result', result_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 性能评估
    • 使用测试集进行性能评估,计算mAP、召回率、精确率等指标。
    • 可以使用YOLOv5自带的评估脚本:
       bash 

      深色版本

      python val.py --data PCB_Defect_Detection_Dataset/data.yaml --weights best.pt --img 640

注意事项

  • 数据格式:确保图像文件和标注文件的命名一致,以便正确匹配。
  • 硬件要求:建议使用GPU进行训练和推理,以加快处理速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
  • 超参数调整:根据实际情况调整网络架构、学习率、批次大小等超参数,以获得更好的性能。

应用场景

  • PCB制造:自动检测PCB上的缺陷,提高生产效率和产品质量。
  • 智能监控:结合自动化生产线,实现对PCB的实时监控和预警。
  • 科研教育:用于PCB缺陷检测研究和教学,提高学生和工程师的专业技能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/448537.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

bp intruder 四种攻击类型 记录

1. Sniper 攻击(狙击手模式) 特点: Sniper 攻击是最基础的一种攻击类型,适用于单参数的简单测试。它会逐一替换每一个 payload 插入点,其他位置保持不变,从而测试单个参数对应用的影响。 工作流程&#…

Java-IO流使用场景

Java IO 流是Java编程中非常重要的组成部分,用于处理文件读写、网络通信等数据传输任务。 1. 字节流 1.1 读取文件 import java.io.FileInputStream; import java.io.IOException;public class ReadFileExample {public static void main(String[] args) {try (FileInputSt…

不用搭建服务?MemFire Cloud让开发更简单

不用搭建服务?MemFire Cloud让开发更简单 在当今的开发世界里,想要开发一个功能齐全的应用,往往意味着需要搭建复杂的后端、开发API接口、处理认证授权、管理数据库……这些琐碎的工作让很多开发者头疼不已,尤其是独立开发者或者…

成都睿明智科技有限公司电商服务可靠不?

在这个短视频风起云涌的时代,抖音不仅成为了人们娱乐消遣的首选平台,更是众多商家竞相追逐的电商新蓝海。成都睿明智科技有限公司,作为抖音电商服务领域的佼佼者,正以其独到的洞察力和专业的服务,助力无数品牌在这片沃…

【进阶OpenCV】 (16)-- 人脸识别 -- FisherFaces算法

文章目录 FisherFaces算法一、算法原理二、算法优势与局限三、算法实现1. 图像预处理2. 创建FisherFace人脸特征识别器3. 训练模型4. 测试图像 总结 FisherFaces算法 PCA方法是EigenFaces人脸识别的核心,但是其具有明显的缺点,在操作过程中会损失许多人…

程序员如何使用AI工具进行设计开发?

一、需求分析阶段 自然语言处理辅助理解需求: 使用自然语言处理工具,如 ChatGPT 等,将复杂的业务需求描述转化为更清晰的技术要求。例如,向 AI 解释项目的背景和目标,让它帮助梳理关键需求点和可能的技术挑战。通过与…

Docker下安装RabbitMQ

文章目录 Docker下安装RabbitMQ1. 下载Rabbitmq镜像2. 创建并运行RabbitMQ容器3. 查看启动情况4. 启动RabbitMQ访问的Web客户端4-1 方法一 进入容器开启4-2 方法二 直接开启5. 浏览器访问RabbitMQ的Web客户端页面6. Web客户端页面问题6-1 问题展示6-2 解决方案 Docker下安装Rab…

机器学习笔记-2

文章目录 一、Linear model二、How to represent this function三、Function with unknown parameter四、ReLU总结、A fancy name 一、Linear model 线性模型过于简单,有很大限制,我们需要更多复杂模式 蓝色是线性模型,线性模型无法去表示…

【自然语言处理】Encoder-Decoder模型中Attention机制的引入

在 Encoder-Decoder 模型中引入 Attention 机制,是为了改善基本Seq2Seq模型的性能,特别是当处理长序列时,传统的Encoder-Decoder模型容易面临信息压缩的困难。Attention机制可以帮助模型动态地选择源序列中相关的信息,从而提高翻译…

了解AI绘画扩散原理-更好掌握AI绘画工具

AI绘画正在成为一种热门的创作工具,壁纸、模特、真人转二次元、艺术字、二维码、设计图、老照片修复、高清修复等,越来越多的使用场景,AI绘画让没有美术基础的人也能够借助工具获得自己想要的美术图片。 AI绘画的核心是“生成模型”&#xf…

插件分享|沉浸式翻译

在这个全球化的时代,语言不再是交流的障碍。但你是否曾经因为一篇外文网页、一份PDF文档或是一段视频字幕而苦恼不已?现在,一款名为“沉浸式翻译”的网页翻译插件,将彻底改变你的翻译体验!(文末附安装地址&…

开源医疗大模型Llama3-Aloe-8B-Alpha,性能超越 MedAlpaca 和 PMC-LLaMA

前言 近年来,大型语言模型 (LLM) 在医疗领域展现出巨大潜力,能够帮助医生和研究人员更快地获取信息、分析数据,并提高医疗服务效率。然而,目前市场上大多数医疗 LLM 都是闭源模型,限制了其在学术研究和应用领域的推广…

基于Arduino的仿生面具

DIY 万圣节恐怖惊喜:自制动态眼动和声音感应的仿生面具 引言 万圣节即将来临,你是否准备好制作一些既诡异又迷人的装饰来增添节日气氛呢?今天,我们将一起探索如何使用3D打印、伺服电机、PIR传感器和DFPlayer MP3模块来制作一个动…

【黑马redis高级篇】持久化

//来源[01,05]分布式缓存 除了黑马,还参考了别的。 目录 1.单点redis问题及解决方案2.为什么需要持久化?3.Redis持久化有哪些方式呢?为什么我们需要重点学RDB和AOF?4.RDB4.1 定义4.2 触发方式4.2.1手动触发save4.2.2被动触发bgsa…

STM32 ADC学习日记

STM32 ADC学习日记 1. ADC简介 ADC 即模拟数字转换器,英文详称 Analog-to-digital converter,可以将外部的模拟信号转换为数字信号。 STM32F103 系列芯片拥有 3 个 ADC(C8T6 只有 2 个),这些 ADC 可以独立使用&…

《中国林业产业》是什么级别的期刊?是正规期刊吗?能评职称吗?

​问题解答 问:《中国林业产业》是不是核心期刊? 答:不是,是知网收录的正规学术期刊。 问:《中国林业产业》级别? 答:国家级。主管单位:国家林业和草原局 …

【Linux】system V进程间通信--共享内存,消息队列,信号量

目录 共享内存 基本原理 创建共享内存 共享内存创建好后,我们可以查询共享内存,验证一下是否创建成功; 删除共享内存 共享内存的挂接 实现通信 消息队列(了解) 消息队列概念 消息队列接口 操作指令 信号量…

从MySQL到OceanBase离线数据迁移的实践

本文作者:玉璁,OceanBase 生态产品技术专家。工作十余年,一直在基础架构与中间件领域从事研发工作。现负责OceanBase离线导数产品工具的研发工作,致力于为 OceanBase 建设一套完善的生态工具体系。 背景介绍 在互联网与云数据库技…

番外篇 | 史上最全的关于CV的一些经典注意力机制代码汇总

前言:Hello大家好,我是小哥谈。注意力是人类认知系统的核心部分,它允许我们在各种感官输入中筛选和专注于特定信息。这一能力帮助我们处理海量的信息,关注重要的事物,而不会被次要的事物淹没。受到人类认知系统的启发,计算机科学家开发了注意力机制,这种机制模仿人类的这…

鸿蒙跨设备协同开发04——跨设备剪切板开发

如果你也对鸿蒙开发感兴趣,加入“Harmony自习室”吧!扫描下方名片,关注公众号,公众号更新更快,同时也有更多学习资料和技术讨论群。 1、概述 当用户拥有多台设备时,可以通过跨设备剪贴板的功能&#xff0c…