R语言机器学习教程大纲

在这里插入图片描述

文章目录

    • 介绍
    • 机器学习算法
      • 监督学习Supervised Learning
        • 分类Classification
        • 回归Regression
      • 无监督学习 Unsupervised Learning
        • 聚类 Clustering
        • 降纬 Dimensionality Reduction
        • 相关Association
      • 强化学习Reinforcement Learning
        • 模型自由 Model-Free Methods
        • 模型驱动 Model-Based Methods
        • 价值驱动 Value-Based Methods
      • 集成学习 Ensemble Learning

介绍

机器学习算法 是计算模型,它们允许计算机在没有明确编程的情况下理解模式,并基于数据进行预测或做出判断。这些算法构成了现代人工智能的基础,并被用于各种应用,包括图像和语音识别、自然语言处理、推荐系统、欺诈检测、自动驾驶汽车等。

本教程将涵盖机器学习的所有重要算法,如支持向量机、决策制定、逻辑回归、朴素贝叶斯分类器、随机森林、K均值聚类、强化学习、向量、层次聚类、XGBoost、AdaBoost、逻辑回归等。并且使用R语言实现这些算法。

机器学习算法

监督学习Supervised Learning

监督学习(Supervised Learning)是机器学习中的一种方法,它使用标记的训练数据来训练模型,以便模型能够预测或决定未见过的数据的输出。在监督学习中,每个训练样本都包括输入数据和相应的输出标签。

分类Classification

在这类问题中,目标是预测离散的类别标签。例如,根据电子邮件的内容判断其是否为垃圾邮件,或者根据图像识别图像中的对象是猫还是狗。

  • Logistic Regression:逻辑回归
  • Support Vector Machines (SVM):支持向量机
  • k-Nearest Neighbors (k-NN):k-最近邻
  • Naive Bayes:朴素贝叶斯
  • Decision Trees:决策树
  • Random Forest:随机森林
  • Gradient Boosting (e.g., XGBoost, LightGBM, CatBoost):梯度提升
  • Neural Networks (e.g., Multilayer Perceptron):神经网络(例如,多层感知器)
回归Regression

这类问题的目标是预测连续的数值。例如,根据房屋的大小、位置和其他特征来预测其价格。

  • Linear Regression:线性回归
  • Ridge Regression:岭回归
  • Lasso Regression:套索回归
  • Support Vector Regression (SVR):支持向量回归
  • Decision Trees Regression:决策树回归
  • Random Forest Regression:随机森林回归
  • Gradient Boosting Regression:梯度提升回归
  • Neural Networks Regression:神经网络回归

无监督学习 Unsupervised Learning

无监督学习(Unsupervised Learning)是机器学习中的一种方法,它处理的数据没有标签或标记。无监督学习的目标是从未标记的数据中发现模式、结构或分布。这种类型的学习通常用于探索数据、识别数据中的聚类、异常检测、降维等任务。

聚类 Clustering

聚类算法试图将数据集中的样本划分成若干个组(或“簇”),使得同一个簇内的样本相似度高,而不同簇之间的样本相似度低。

  • k-Means:k-均值
  • Hierarchical Clustering:层次聚类
  • DBSCAN (Density-Based Spatial Clustering of Applications with Noise):DBSCAN(基于密度的聚类应用中的噪声空间聚类)
  • Gaussian Mixture Models (GMM):高斯混合模型 (GMM)
降纬 Dimensionality Reduction

降维算法试图将高维数据转换为低维数据,同时尽可能保留原始数据的重要信息。这有助于数据可视化和提高算法的计算效率。

  • Principal Component Analysis (PCA):主成分分析
  • t-Distributed Stochastic Neighbor Embedding (t-SNE):t-分布随机邻域嵌入
  • Linear Discriminant Analysis (LDA):线性判别分析
  • Independent Component Analysis (ICA):独立成分分析
  • UMAP (Uniform Manifold Approximation and Projection):均匀流形近似和投影
相关Association

这种类型的算法用于发现大型数据库中变量之间的有趣关系。例如,市场篮子分析就是一种关联规则学习,用于发现顾客购买行为中的模式。

  • Apriori Algorithm:Apriori算法 (通过频繁项集来发现数据中的关联规则)
  • Eclat Algorithm:Eclat算法(一种改进的Apriori算法,使用深度优先搜索策略来提高效率)

强化学习Reinforcement Learning

强化学习(Reinforcement Learning,简称RL)是机器学习的一个重要分支,它主要关注如何在环境中采取行动以最大化某种累积奖励。强化学习的核心是智能体(Agent)通过与环境(Environment)的交互来学习最佳策略,以达成特定的目标。

模型自由 Model-Free Methods

基于价值(Value-Based):直接学习价值函数,然后使用这个函数来选择动作。例如,Q学习(Q-Learning)和时间差分(Temporal Difference,TD)学习。基于策略(Policy-Based):直接学习策略,而不是价值函数。例如,策略梯度方法(Policy Gradient Methods)和深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)。基于策略(Policy-Based):直接学习策略,而不是价值函数。例如,策略梯度方法(Policy Gradient Methods)和深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)。基于演员-评论家(Actor-Critic):结合了基于价值和基于策略的方法,智能体有一个“演员”来选择动作,和一个“评论家”来评估这些动作的价值。

  • Q-Learning:Q-学习
  • Deep Q-Network (DQN):深度Q网络
  • SARSA (State-Action-Reward-State-Action):状态-动作-奖励-状态-动作
  • Policy Gradient Methods (e.g., REINFORCE):策略梯度方法
模型驱动 Model-Based Methods

智能体试图学习环境的模型,然后使用这个模型来预测不同动作的结果,并选择最优动作。

  • Deep Deterministic Policy Gradient (DDPG):深度确定性策略梯度
  • Proximal Policy Optimization (PPO):近端策略优化
  • Trust Region Policy Optimization (TRPO):信任域策略优化
价值驱动 Value-Based Methods

基于价值(Value-Based):直接学习价值函数,然后使用这个函数来选择动作。例如,Q学习(Q-Learning)和时间差分(Temporal Difference,TD)学习。

  • Monte Carlo Methods: 蒙特卡洛方法
  • Temporal Difference (TD) Learning:时间差分学习

集成学习 Ensemble Learning

集成学习(Ensemble Learning)是机器学习中的一种方法,它结合多个学习算法来提高预测的准确性、稳定性和泛化能力。集成学习的基本思想是“集思广益”,即通过组合多个模型的预测结果来得到一个更优的预测结果。这种方法假设没有一个单一的模型能够完美地捕捉数据中的所有模式和结构,但是多个模型的组合可以更好地逼近真实情况。

  1. 装袋(Bagging,Bootstrap Aggregating)
    • 装袋方法通过对原始数据集进行多次随机抽样(有放回)来创建多个子数据集。
    • 每个子数据集上训练一个基学习器(如决策树)。
    • 最终的预测结果是所有基学习器预测结果的平均值(回归问题)或多数投票(分类问题)。
    • 随机森林(Random Forest)是装袋方法的一个变种,它在构建决策树时引入了更多的随机性。
  2. 提升(Boosting, AdaBoost, Gradient Boosting)
    • 提升方法通过顺序地训练多个基学习器,每个学习器都尝试纠正前一个学习器的错误。
    • 每个新的学习器在训练时会给予前一个学习器预测错误的样本更多的权重。
    • 基学习器通常比较简单,如决策树桩(决策树的简化版)。
    • AdaBoost、Gradient Boosting和XGBoost是提升方法的一些常见实现。
  3. 堆叠(Stacking)
    • 堆叠方法首先训练多个不同的基学习器。
    • 然后,这些基学习器的预测结果被用作一个新的学习器(称为元学习器或元模型)的输入。
    • 元学习器在这些预测结果的基础上进行训练,以学习如何最好地组合这些基学习器的预测。
    • 堆叠可以用于分类、回归和特征学习等多种任务。
  4. 混合(Blending)
    • 混合方法类似于堆叠,但它通常用于分类问题。
    • 在混合中,多个基学习器的预测概率被直接组合,而不是通过训练一个元学习器。
    • 这可以通过简单的平均或优化组合权重来实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/451422.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

服务器托管的优缺点有哪些?

由于数字化程度不断提高,服务器在日常业务中发挥着越来越重要的作用。在大多数情况下,服务器由公司自己维护和管理。但对于一些公司来说,托管服务器(将这些任务交给专业人员)是更好的选择。 关于服务器的优缺点,有一点是明确的&am…

【SpringBoot】16 文件上传(Thymeleaf + MySQL)

Gitee仓库 https://gitee.com/Lin_DH/system 介绍 文件上传是指将本地的图片、视频、音频等文件上传到服务器,供其他用户浏览下载的过程,文件上传在日常项目中用的非常广泛。 实现代码 第一步:在配置文件新增如下配置 application.yml s…

浏览器实时更新esp32-c3 Supermini http server 数据

一利用此程序的思路就可以用浏览器显示esp32 采集的各种传感器的数据,也可以去控制各种传感器。省去编写针对各系统的app. 图片 1.浏览器每隔1秒更新一次数据 2.现在更新的是开机数据,运用此程序,可以实时显示各种传感器的实时数据 3.es…

鸿蒙网络编程系列27-HTTPS服务端证书的四种校验方式示例

1. 服务端数字证书验证的问题 在鸿蒙客户端对服务端发起HTTPS请求时,如果使用HttpRequest的request发起请求,那么就存在服务端数字证书的验证问题,你只有两个选择,一个是使用系统的CA,一个是使用自己选定的CA&#xf…

C++初阶

目录 一.命名空间 1.命名空间定义 2.命名空间使用 二.C输入&输出 三.缺省参数 四. 函数重载 五.引用 1.常引用 2.传值、传引用效率比较 3.引用和指针的区别 4.引用和指针的不同点: 小知识点: 六.内联函数 七.auto关键字(C11) 1.auto的使用细则 八.基于范围…

【Spring声明式事务失效的12种场景测试】

文章目录 一.Spring声明式事务是什么?二.Spring事务失效的12种场景1.访问权限问题 小结 一.Spring声明式事务是什么? Spring声明式事务是一种通过配置的方式管理事务的方法,它通过注解或XML配置来声明哪些方法需要事务管理,从而将…

杨氏矩阵(有一个数字矩阵,矩阵的每行从左到右的递增的,矩阵从上到下是递增的请编写一个程序,在这样的矩阵中查找某个数字是否存在)

//杨氏矩阵 //有一个数字矩阵&#xff0c;矩阵的每行从左到右的递增的&#xff0c;矩阵从上到下是递增的 //请编写一个程序&#xff0c;在这样的矩阵中查找某个数字是否存在 // 1 2 3 // 4 5 6 // 7 8 9 #include<stdio.h> int main() {int a[3][3] { 0 };int i 0, j …

数据库管理-第252期 深入浅出多主多活数据库技术- Cantian存储引擎(二)(20241017)

数据库管理252期 2024-10-17 数据库管理-第252期 深入浅出多主多活数据库技术- Cantian存储引擎&#xff08;二&#xff09;&#xff08;20241017&#xff09;1 部署规划2 服务器基础配置2.1 配置HOSTS2.2 关闭防火墙2.3 关闭SELinux2.4 配置yum源 3 编译服务器配置3.1 安装git…

Vue Google 广告的配置

前置条件&#xff1a;已经在Google AdSense 中 添加网站 并通过审核 同时已创建广告单元。 因 VUE 的 Script 配置问题&#xff0c;所以不能直接拷贝内容。 index.html 配置 添加 Google 广告的脚本。 //index.template.html /* * 在head标签中添加 script 【 **** 】&#…

网络变压器在PCIe网口应用的案例

PCIe&#xff08;Peripheral Component Interconnect Express&#xff09;是一种高速串行计算机总线标准&#xff0c;用于连接计算机主板上的设备&#xff0c;如显卡、网络适配器、存储控制器等。H82422S 网络变压器&#xff08;Ethernet Transformer&#xff09;&#xff0c;在…

SSM框架学习(七、MyBatis-Plus高级用法:最优化持久层开发)

目录 一、MyBatis-Plus快速入门 1.简介 2.快速入门 二、MyBatis-Plus核心功能 1.基于Mapper接口CRUD &#xff08;1&#xff09;Insert 方法 &#xff08;2&#xff09;Delete方法 &#xff08;3&#xff09;Update 方法 &#xff08;4&#xff09;Select方法 2.基于Serv…

使用LangGraph构建多Agent系统架构!

0 前言 Agent是一个使用大语言模型决定应用程序控制流的系统。随着这些系统的开发&#xff0c;它们随时间推移变得复杂&#xff0c;使管理和扩展更困难。如你可能会遇到&#xff1a; Agent拥有太多的工具可供使用&#xff0c;对接下来应该调用哪个工具做出糟糕决策上下文过于…

重塑企业数字化未来:物联网与微服务架构的战略性深度融合

从物联网到微服务架构的战略价值解读 随着全球数字化转型的不断加速&#xff0c;企业需要重新审视其技术基础架构&#xff0c;以适应日益复杂的业务需求和市场变化。物联网&#xff08;IoT&#xff09;作为核心技术&#xff0c;已广泛应用于制造、农业、交通、医疗等各个行业&…

Qt 支持打包成安卓

1. 打开维护Qt&#xff0c;双击MaintenanceTool.exe 2.登陆进去,默认是添加或移除组件&#xff0c;点击下一步&#xff0c; 勾选Android, 点击下一步 3.更新安装中 4.进度100%&#xff0c;完成安装&#xff0c;重启。 5.打开 Qt Creator&#xff0c;编辑-》Preferences... 6.进…

比亚迪车机安装第三方应用教程

比亚迪车机安装第三方应用教程 比亚迪车机U盘安装APP&#xff0c; 无论是dlink3.0还是4.0都是安卓系统&#xff0c;因此理论上安卓应用是都可以安装的&#xff0c;主要就是横屏和竖屏的区别。在比亚迪上安装软件我主要推荐两种方法。 第一种&#xff0c;直接从电脑端下载安装布…

(01)fastapi的基础学习——开启学习之路

前言 性能极高&#xff0c;可与 NodeJS, Go 媲美。(得益于Starlette和Pydantic)。 Starlette 是一个轻量级 ASGI 框架/工具包。它非常适合用来构建高性能的 asyncio 服务&#xff0c;并支持 HTTP 和 WebSockets。 官方网址&#xff1a;Starlette Pydantic 是一个使用Python…

摇人摇人, JD内推岗位(社招+校招)

摇人摇人, 有找工作的家人们看过来啊~ 虚位以待, 快到碗里来 算法开发工程师岗 京东云 北京|T7, 5-10年 岗位职责&#xff1a; 参与基于RAG知识库平台和ChatBI产品打造和商业化落地&#xff0c;进行相关技术&#xff1a;包括OCR、文档拆分、意图理解、多轮对话、NL2SQL、Embed…

idea删除git历史提交记录

前言&#xff1a;此文章是我在实际工作中有效解决问题的方法&#xff0c;做记录的同时也供大家参考&#xff01; 一、 首先&#xff0c;通过idea的终端或系统的cmd控制台&#xff0c;进入到你的项目文件根目录&#xff0c;idea终端默认就是项目根目录。 二、确保你当前处于要删…

Bluetooth Channel Sounding中关于CS Step及Phase Based Ranging相应Mode介绍

目录 BLE CS中Step定义 BLE CS中交互的数据包/波形格式 BLE CS中Step的不同Mode BLE CS中Step的执行过程 Mode0介绍 Mode0 步骤的作用 Mode0步骤的执行过程 Mode0步骤的执行时间 Mode0步骤的时间精度要求 Mode2介绍 Mode2步骤的作用和执行过程 Mode2步骤的执行时间 B…

Vue3 集成Monaco Editor编辑器

Vue3 集成Monaco Editor编辑器 1. 安装依赖2. 使用3. 效果 Monaco Editor &#xff08;官方链接 https://microsoft.github.io/monaco-editor/&#xff09;是一个由微软开发的功能强大的在线代码编辑器&#xff0c;被广泛应用于各种 Web 开发场景中。以下是对 Monaco Editor 的…