使用LangGraph构建多Agent系统架构!

0 前言

Agent是一个使用大语言模型决定应用程序控制流的系统。随着这些系统的开发,它们随时间推移变得复杂,使管理和扩展更困难。如你可能会遇到:

  • Agent拥有太多的工具可供使用,对接下来应该调用哪个工具做出糟糕决策
  • 上下文过于复杂,以至于单个Agent无法跟踪
  • 系统中需要多个专业领域(例如规划者、研究员、数学专家等)。

为解决这些问题,你可能考虑将应用程序拆分成多个更小、独立的代理,并将它们组合成一个多Agent系统。这些独立的Agent可以简单到一个提示和一个LLM调用,或者复杂到像一个ReActAgent(甚至更多!)。

1 多Agent系统的好处

  • 模块化:独立的Agent使得开发、测试和维护Agent系统更加容易。
  • 专业化:你可以创建专注于特定领域的专家Agent,这有助于提高整个系统的性能。
  • 控制:你可以明确控制Agent之间的通信(而不是依赖于函数调用)。

2 多Agent架构

多Agent系统中有几种方式连接Agent:

  • 网络:每个Agent都可与其他Agent通信。任何Agent都可以决定接下来调用哪个其他Agent
  • 监督者:每个Agent与一个监督者Agent通信。监督者Agent决定接下来应该调用哪个Agent。
  • 监督者(工具调用):这是监督者架构的一个特殊情况。个别Agent可以被表示为工具。在这种情况下,监督者Agent使用一个工具调用LLM来决定调用哪个Agent工具,以及传递哪些参数给这些Agent。
  • 层次结构:你可以定义一个有监督者的多Agent系统。这是监督者架构的概括,并允许更复杂的控制流。
  • 自定义多Agent工作流:每个Agent只与Agent子集中的其他Agent通信。流程的部分是确定性的,只有一些Agent可以决定接下来调用哪个其他Agent。

网络

这种架构中,Agent被定义为图节点。每个Agent都可以与每个其他Agent通信(多对多连接),并且可以决定接下来调用哪个Agent。虽然非常灵活,但随着Agent数量的增加,这种架构扩展性并不好:

  • 很难强制执行接下来应该调用哪个Agent
  • 很难确定应该在Agent之间传递多少信息

建议生产避免使用这架构,而是使用以下架构之一。

监督者

这种架构中,定义Agent为节点,并添加一个监督者节点(LLM),它决定接下来应该调用哪个Agent节点。使用条件边根据监督者的决策将执行路由到适当的Agent节点。这种架构也适用于并行运行多个Agent或使用map-reduce模式。

from typing import Literal
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, MessagesState, STARTmodel = ChatOpenAI()class AgentState(MessagesState):next: Literal["agent_1", "agent_2"]def supervisor(state: AgentState):response = model.invoke(...)return {"next": response["next_agent"]}def agent_1(state: AgentState):response = model.invoke(...)return {"messages": [response]}def agent_2(state: AgentState):response = model.invoke(...)return {"messages": [response]}builder = StateGraph(AgentState)
builder.add_node(supervisor)
builder.add_node(agent_1)
builder.add_node(agent_2)builder.add_edge(START, "supervisor")
# 根据监督者的决策路由到Agent之一或退出
builder.add_conditional_edges("supervisor", lambda state: state["next"])
builder.add_edge("agent_1", "supervisor")
builder.add_edge("agent_2", "supervisor")supervisor = builder.compile()

教程以获取有关监督者多Agent架构的示例。

监督者(工具调用)

在这种监督者架构的变体中,我们定义个别Agent为工具,并在监督者节点中使用一个工具调用LLM。这可以作为一个ReAct风格的Agent实现,有两个节点——一个LLM节点(监督者)和一个执行工具(在这种情况下是Agent)的工具调用节点。

from typing import Annotated
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import InjectedState, create_react_agentmodel = ChatOpenAI()def agent_1(state: Annotated[dict, InjectedState]):tool_message = ...return {"messages": [tool_message]}def agent_2(state: Annotated[dict, InjectedState]):tool_message = ...return {"messages": [tool_message]}tools = [agent_1, agent_2]
supervisor = create_react_agent(model, tools)

自定义多Agent工作流

在这种架构中,我们添加个别Agent作为图节点,并提前定义Agent被调用的顺序,以自定义工作流。在LangGraph中,工作流可以以两种方式定义:

  • 显式控制流(普通边):LangGraph允许你通过普通图边显式定义应用程序的控制流(即Agent通信的顺序)。这是上述架构中最确定性的变体——我们总是提前知道接下来将调用哪个Agent。
  • 动态控制流(条件边):在LangGraph中,你可以允许LLM决定应用程序控制流的部分。这可以通过使用条件边实现。一个特殊情况是监督者工具调用架构。在这种情况下,驱动监督者Agent的工具调用LLM将决定工具(Agent)被调用的顺序。
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, MessagesState, STARTmodel = ChatOpenAI()def agent_1(state: MessagesState):response = model.invoke(...)return {"messages": [response]}def agent_2(state: MessagesState):response = model.invoke(...)return {"messages": [response]}builder = StateGraph(MessagesState)
builder.add_node(agent_1)
builder.add_node(agent_2)
# 明确定义流程
builder.add_edge(START, "agent_1")
builder.add_edge("agent_1", "agent_2")

3 Agent之间通信

构建多Agent系统时最重要的事情是弄清楚Agent如何通信。有几个不同的考虑因素:

  • Agent是通过图状态或工具调用进行通信的吗?
  • 如果两个Agent有不同的状态模式怎么办?
  • 如何通过共享消息列表进行通信?

3.1 图状态与工具调用

Agent之间传递的“有效载荷”是什么?在上述讨论的大多数架构中,Agent通过图状态进行通信。在监督者带工具调用的情况下,有效载荷是工具调用参数。

图状态

要通过图状态进行通信,各个Agent需要被定义为图节点。这些可以作为函数或整个子图添加。在图执行的每一步中,Agent节点接收当前的图状态,执行Agent代码,然后将更新的状态传递给下一个节点。

通常,Agent节点共享一个单一的状态模式。然而,你可能想要设计具有不同状态模式的Agent节点。

3.2 不同的状态模式

一个Agent可能需要与其余Agent有不同的状态模式。例如,搜索Agent可能只需要跟踪查询和检索到的文档。在LangGraph中有两种方法可以实现这一点:

  • 定义具有单独状态模式的子图Agent。如果子图和父图之间没有共享状态键(通道),则需要添加输入/输出转换,以便父图知道如何与子图通信。
  • 定义具有私有输入状态模式的Agent节点函数,该模式与整个图的状态模式不同。这允许传递仅需要用于执行该特定Agent的信息。

3.3 共享消息列表

Agent之间通信的最常见方式是通过共享状态通道,通常是消息列表。这假设状态中至少有一个通道(键)由Agent共享。当通过共享消息列表通信时,还有一个额外的考虑因素:Agent是共享完整的历史记录还是仅共享最终结果?

共享完整历史记录

Agent可以共享他们的思维过程的完整历史记录(即“草稿垫”)与其他所有Agent。这种“草稿垫”通常看起来像一个消息列表。共享完整思维过程的好处是,它可能有助于其他Agent做出更好的决策,提高整个系统的整体推理能力。缺点是,随着Agent数量和复杂性的增长,“草稿垫”将迅速增长,可能需要额外的策略进行内存管理。

共享最终结果

Agent可以拥有自己的私有“草稿垫”,并且只与其余Agent共享最终结果。这种方法可能更适合拥有许多Agent或更复杂的Agent的系统。在这种情况下,你需要定义具有不同状态模式的Agent。

对于作为工具调用的Agent,监督者根据工具模式确定输入。此外,LangGraph允许在运行时传递状态给单个工具,以便从属Agent在需要时可以访问父状态。

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化

  • LLM Agent应用开发

  • 区块链应用开发

  • 大数据开发挖掘经验

  • 推荐系统项目

    目前主攻市级软件项目设计、构建服务全社会的应用系统。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/451404.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重塑企业数字化未来:物联网与微服务架构的战略性深度融合

从物联网到微服务架构的战略价值解读 随着全球数字化转型的不断加速,企业需要重新审视其技术基础架构,以适应日益复杂的业务需求和市场变化。物联网(IoT)作为核心技术,已广泛应用于制造、农业、交通、医疗等各个行业&…

Qt 支持打包成安卓

1. 打开维护Qt,双击MaintenanceTool.exe 2.登陆进去,默认是添加或移除组件,点击下一步, 勾选Android, 点击下一步 3.更新安装中 4.进度100%,完成安装,重启。 5.打开 Qt Creator,编辑-》Preferences... 6.进…

比亚迪车机安装第三方应用教程

比亚迪车机安装第三方应用教程 比亚迪车机U盘安装APP, 无论是dlink3.0还是4.0都是安卓系统,因此理论上安卓应用是都可以安装的,主要就是横屏和竖屏的区别。在比亚迪上安装软件我主要推荐两种方法。 第一种,直接从电脑端下载安装布…

(01)fastapi的基础学习——开启学习之路

前言 性能极高,可与 NodeJS, Go 媲美。(得益于Starlette和Pydantic)。 Starlette 是一个轻量级 ASGI 框架/工具包。它非常适合用来构建高性能的 asyncio 服务,并支持 HTTP 和 WebSockets。 官方网址:Starlette Pydantic 是一个使用Python…

摇人摇人, JD内推岗位(社招+校招)

摇人摇人, 有找工作的家人们看过来啊~ 虚位以待, 快到碗里来 算法开发工程师岗 京东云 北京|T7, 5-10年 岗位职责: 参与基于RAG知识库平台和ChatBI产品打造和商业化落地,进行相关技术:包括OCR、文档拆分、意图理解、多轮对话、NL2SQL、Embed…

idea删除git历史提交记录

前言:此文章是我在实际工作中有效解决问题的方法,做记录的同时也供大家参考! 一、 首先,通过idea的终端或系统的cmd控制台,进入到你的项目文件根目录,idea终端默认就是项目根目录。 二、确保你当前处于要删…

Bluetooth Channel Sounding中关于CS Step及Phase Based Ranging相应Mode介绍

目录 BLE CS中Step定义 BLE CS中交互的数据包/波形格式 BLE CS中Step的不同Mode BLE CS中Step的执行过程 Mode0介绍 Mode0 步骤的作用 Mode0步骤的执行过程 Mode0步骤的执行时间 Mode0步骤的时间精度要求 Mode2介绍 Mode2步骤的作用和执行过程 Mode2步骤的执行时间 B…

Vue3 集成Monaco Editor编辑器

Vue3 集成Monaco Editor编辑器 1. 安装依赖2. 使用3. 效果 Monaco Editor (官方链接 https://microsoft.github.io/monaco-editor/)是一个由微软开发的功能强大的在线代码编辑器,被广泛应用于各种 Web 开发场景中。以下是对 Monaco Editor 的…

Linux 阻塞和非阻塞 IO 实验

阻塞和非阻塞 IO 是 Linux 驱动开发里面很常见的两种设备访问模式,在编写驱动的时候一定要考虑到阻塞和非阻塞。本章我们就来学习一下阻塞和非阻塞 IO,以及如何在驱动程序中处理阻塞与非阻塞,如何在驱动程序使用等待队列和 poll 机制。 阻塞和…

【机器学习】聚类算法|KMeans实现流程|SSE误差平法和|SC轮廓系数法|顾客数据聚类分析案例

文章目录 聚类算法聚类算法简介聚类算法分类 聚类算法API案例 使用KMeans模型数据探索聚类 KMeans实现流程***模型评估方法误差平方和 SSE(The sum of squares due to error)“肘”方法 (Elbow method) - K值确定 SC轮廓系数法(Silhouette Coefficient)聚…

微服务--OpenFeign【重点】

如果哪天 我们硬编码写的接口变了,只要写过该接口的 都要改,太麻烦了, 所以 就用 OpenFeign 来解决这个麻烦 了解: SimpleClientHttpRequestFactory和 HttpComponentsClientHttpRequestFactory 都是Spring框架中用于创建ClientH…

sentinel原理源码分析系列(六)-统计指标

调用链和统计节点构建完成,进入统计指标插槽,统计指标在最后执行的,等后面的插槽执行完,资源调用完成了,根据资源调用情况累计。指标统计是最重要的插槽,所有的功能都依靠指标数据,指标的正确与…

尤雨溪都点赞的表单校验解决方案,到底多么强

尤雨溪都点赞的表单校验解决方案,到底多么强 如果你是 Vue 开发者,那么 Vorms 绝对是你不能错过的表单验证利器。本文将带你快速了解 Vorms 的基本功能、特点和如何简单使用它提升你的开发体验。 软件简介 Vorms 是一个基于 Vue 3 组合式 API 的表单验证…

STL——string类

前言 从本篇博客开始,就正式来介绍STL的正式内容,STL在C中的学习中非常重要,具有举足轻重的地位,这块儿内容会给我们提供很多现成的接口,可以大大简化我们的代码,我们之前用C语言写的代码将会被极大地简化…

【数据分享】全国能源-电力平衡表(2000-2020年)

数据介绍 一级标题指标名称单位能源电力可供量亿千瓦小时能源电力生产量亿千瓦小时能源水电生产电力量亿千瓦小时能源火电生产电力量亿千瓦小时能源核电生产电力量亿千瓦小时能源风电生产电力量亿千瓦小时能源电力进口量亿千瓦小时能源电力出口量亿千瓦小时能源电力能源消费总量…

007、链表的回文结构

0、题目描述 链表回文结构 1、法1 一个复杂的问题可以拆解成几个简单的问题,找中间节点和逆置链表(翻转链表)之前都做过。 class PalindromeList { public://1、找中间节点ListNode* FindMid(ListNode* A){if (A nullptr || A->next …

设计模式03-装饰模式(Java)

4.4 装饰模式 1.模式定义 不改变现有对象结构的情况下,动态地给该对象增加一些职责(即增加其额外功能)的模式。 2.模式结构 抽象构件角色 :定义一个抽象接口以规范准备接收附加责任的对象。客户端可以方便调用装饰类和被装饰类…

基于STM32的电动汽车遥控器设计

引言 本项目设计了一个基于STM32的电动汽车遥控器,能够通过无线通信(如蓝牙或射频模块)控制电动汽车的前进、后退、左右转向等动作。该遥控器采用按键或摇杆操作,并通过无线模块将控制指令发送给汽车控制端,实现远程操…

吴恩达深度学习笔记(8)

计算机视觉 包括:图像分类也叫做图像识别、目标检测等 一个小的图像可能1M,但是他的像素是一个超级大向量,如果直接深度学习那么运算量会很大,因此需要运用卷积运算。 卷积运算是卷积神经网络的基础单元之一。下面用边缘检测理…

FastGPT本地开发 之 通过Navicat管理MongoDB、PostgreSQL数据库

1. 背景 前期已经完成FastGPT的本地化部署工作,通过Docker启动FastGPT的相关容器即可运行。(共6个容器) 2.本地化开发 2.1 前置依赖 2.2 源码拉取 git clone gitgithub.com:labring/FastGPT.git2.3 数据库管理 本地化运行的FastGPT使用…