TCP(三次握手)和UDP(面向无连接)的原理以及区别

TCP(三次握手)和UDP(面向无连接)的原理以及区别

网络协议是每个前端工程师都必须要掌握的知识,TCP/IP 中有两个具有代表性的传输层协议。

概述

📡TCP(Transmission Control Protocol)是一种网络协议,用于设备在互联网上进行通信,它通过三次握手等机制确保传输可靠性和完整性。它是TCP/IP协议套件中的主要协议之一,提供错误检测和纠正功能,被广泛应用于各种领域,包括Web浏览、电子邮件、文件传输等。

📡UDP(用户数据报协议)是一种无连接的协议,运行在IP(互联网协议)之上。与TCP不同,UDP在发送数据之前不建立连接。UDP是一种更简单、更快速的协议,它专注于发送数据包,而无需进行错误检查、重传或保证传输的可靠性,也就是说当报文发送之后,是无法得知其是否安全完整到达的。
在这里插入图片描述

🔧TCP和UDP之间的区别

TCP是面向连接的,而UDP是基于连接的,需要进行三次握手建立连接:

对于UDP协议是面向无连接的,也就是说不需要在正式传递数据之前先连接对方。然后UDP协议只是数据报文的搬运工,在传输过程中可能会出现丢包,不保证有序且不丢失的传递到对方,并且UDP也没有任何控制流量的算法,但正因为这些因素从而使它的传输速率更加的高效,体现了它的实时性

对于TCP是面向连接,它与UDP基本是反着来的,建立连接需要先进行握手,在数据传输过程中,通过各种算法保证数据传输的可靠性,但相对UDP,TCP的传输速率又慢了些。

🔮举个例子:

在我们生活中,我们需要把一堆零件移到另外一个地方的时候,如果我们使用UDP,那么就是直接使用铲车一次性把这些零件放过去,至于路上掉了多少它不管,只管把大部分零件送到,这样的UDP快速但不可靠;如果我们使用了TCP,那么我们会先把零件尽然有序的分类开,并依次打包发送,保证每一个零件通过专门的算法通道准确无误地到达目的地,如果路上掉了它还会通过算法去找,这样的TCP有序且可靠。
在这里插入图片描述
TCP与UDP头部的区别:
在这里插入图片描述
在这里插入图片描述
从两张图可以看出TCP的头部比UDP头部复杂的多。

🔆TCP的通信过程:

三次握手✋、确认传输📶、四次挥手✋,三次握手是建立连接的过程。

🌌三次握手

我们重点了解一下TCP重要的头部字段:

	Sequence number:这个序号保证了 TCP 传输的报文都是有序的,对端可以通过序号顺序的拼接报文Acknowledgement Number:这个序号表示数据接收端期望接收的下一个字节的编号是多少,同时也表示上一个序号的数据已经收到。Window Size:窗口大小,表示还能接收多少字节的数据,用于流量控制标识符。URG=1:该字段为一表示本数据报的数据部分包含紧急信息,是一个高优先级数据报文,此时紧急指针有效。紧急数据一定位于当前数据包数据部分的最前面,紧急指针标明了紧急数据的尾部。ACK=1:该字段为一表示确认号字段有效。此外,TCP 还规定在连接建立后传送的所有报文段都必须把ACK 置为一。PSH=1:该字段为一表示接收端应该立即将数据 push 给应用层,而不是等到缓冲区满后再提交。RST=1:该字段为一表示当前 TCP 连接出现严重问题,可能需要重新建立 TCP 连接,也可以用于拒绝非法的报文段和拒绝连接请求。SYN=1:当SYN=1,ACK=0时,表示当前报文段是一个连接请求报文。当SYN=1,ACK=1时,表示当前报文段是一个同意建立连接的应答报文。FIN=1:该字段为一表示此报文段是一个释放连接的请求报文。

💬当客户端向服务端发起连接时,会先发一包连接请求数据,过去询问一下,能否与你建立连接?这包数据称之为SYN包,如果对端同意连接,则回复一包SYN+ACK包,客户端收到之后,发送一包ACK包,连接建立,因为这个过程中互相发送了三包数据,所以称之为三次握手。
在这里插入图片描述

首先假设主动发起请求的一端称为客户端,被动连接的一端称为服务端。不管是客户端还是服务端,TCP 连接建立完后都能发送和接收数据,所以 TCP 是一个全双工的协议。
起初,两端都为 CLOSED 状态。在通信开始前,双方都会创建 TCB。 服务器创建完 TCB 后便进入 LISTEN 状态,此时开始等待客户端发送数据。
🚀第一次握手
客户端向服务端发送连接请求报文段。该报文段中包含自身的数据通讯初始序号。请求发送后,客户端便进入SYN-SENT 状态。
🚀第二次握手
服务端收到连接请求报文段后,如果同意连接,则会发送一个应答,该应答中也会包含自身的数据通讯初始序号,发送完成后便进入 SYN-RECEIVED 状态。
🚀第三次握手
当客户端收到连接同意的应答后,还要向服务端发送一个确认报文。客户端发完这个报文段后便进入
ESTABLISHED 状态,服务端收到这个应答后也进入 ESTABLISHED 状态,此时连接建立成功。

第三次握手中可以包含数据,通过快速打开(TFO)技术就可以实现这一功能。其实只要涉及到握手的协议,都可以使用类似 TFO 的方式,客户端和服务端存储相同的 cookie,下次握手时发出 cookie 达到减少 RTT 的目的。

接下来我们思考一个问题:💎为什么 TCP 建立连接需要三次握手,明明两次就可以建立起连接。
原因:为了防止出现失效的连接请求报文段被服务器端接收的情况,产生错误。
🚩例子:
客户端发送了一个连接请求A,但是因为网络原因造成了超时,这时TCP会启动超时重传的机制再次发送一个连接请求B,此时请求顺利到达了服务器,服务端应答完就建立了请求,然后接收数据后释放了连接;
🚩假如说:这时候连接请求A在两端都关闭后才到达服务端,那么此时服务端会误以为又需要建立TCP连接,从而应答了请求A并进入了ESTABLISHED 状态,但是客户端却是CLOSED的状态,那么会导致服务端一直等待客户端响应,从而造成资源的浪费。
在这里插入图片描述🏮在建立连接中,任意一端掉线,TCP 都会重发 SYN 包,一般会重试五次,在建立连接中可能会遇到 SYNFlood 攻击。遇到这种情况你可以选择调低重试次数或者干脆在不能处理的情况下拒绝请求。

👐 四次解手

在这里插入图片描述
TCP 是全双工的,在断开连接时两端都需要发送 FIN 和 ACK。
🍪第一次解手
若客户端 A 认为数据发送完成,则它需要向服务端 B 发送连接释放请求。

🍪第二次解手
B 收到连接释放请求后,会告诉应用层要释放 TCP 链接。然后会发送 ACK 包,并进入CLOSE_WAIT 状态,此时表明 A 到 B 的连接已经释放,不再接收 A 发的数据了。但是因为 TCP 连接是双向的,所以 B 仍旧可以发送数据给 A。
🍪第三次解手
B 如果此时还有没发完的数据会继续发送,完毕后会向 A 发送连接释放请求,然后 B 便进入 LAST-ACK 状态。
通过延迟确认的技术(通常有时间限制,否则对方会误认为需要重传),可以将第二次和第三次握手合并,延迟 ACK 包的发送。
🍪第四次解手
A 收到释放请求后,向 B 发送确认应答,此时 A 进入 TIME-WAIT 状态。该状态会持续 2MSL(最大段生存期,指报文段在网络中生存的时间,超时会被抛弃) 时间,若该时间段内没有 B 的重发请求的话,就进入 CLOSED 状态。当 B 收到确认应答后,也便进入 CLOSED 状态。
🎿为什么 A 要进入 TIME-WAIT 状态,等待 2MSL 时间后才进入 CLOSED 状态?
为了保证 B 能收到 A 的确认应答。若 A 发完确认应答后直接进入 CLOSED 状态,如果确认应答因为网络问题一直没有到达,那么会造成 B 不能正常关闭。

今天的分享就到这里啦,感谢大家的阅览,小江会一直与大家一起努力,文章中如有不足之处,你的支持是我前进的最大动力,请多多指教,感谢支持,持续更新中 ……

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/451806.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【opengles】笔记1:屏幕坐标与归一化坐标(NDC)的转换

参考资料 OpenGL希望在所有顶点着色器运行后,所有我们可见的顶点都变为标准化设备坐标(Normalized Device Coordinate, NDC)。也就是说,每个顶点的x,y,z坐标都应该在-1.0到1.0之间,超出这个坐标范围的顶点都将不可见。…

【Python】NumPy(二):数组运算、数据统计及切片索引、广播机制

目录 Numpy数组 数组的基本运算 乘法 加法 数组的数据统计 平均值 中位数 最大值和最小值 求和 累积和 标准差 方差 切片和索引 索引 一维数组的索引 二维数组的索引 获取多个元素 布尔索引 切片 一维数组切片 二维数组切片 多维数组切片 广播机制 规则 …

Seata序列化优化

Apache Seata(incubating) 是一款开源的分布式事务解决方案,致力于在微服务架构下提供高性能和简单易用的分布式事务服务。 本篇文章主要介绍Seata序列化实现优化。Seata对于网络传输数据,提供了多种序列化实现,包含Seata自身的序列化实现、…

一元n次多项式加法【数据结构-链表】

一元n次多项式定义如下: 其中Ai​为实数,i为不小于0的整数。在完成“一元n次多项式输入输出”题目的基础上实现一元n次多项式的加法。要求用链表实现上述一元n次多项式的操作。 输入格式: 有两个一元n次多项式,例如分别为: f(X)…

80.【C语言】数据结构之时间复杂度

目录 1.数据结构的定义 2.算法的定义 3.算法的效率 1.衡量一个算法的好坏的方法 例题:计算以下代码的循环次数 2.大O的渐进表示法 练习1:求下列代码的时间复杂度 练习2:求下列代码的时间复杂度 练习3:求下列代码的时间复杂度 练习4:求下列代码的时间复杂度 4.总结:计…

Leetcode—1115. 交替打印 FooBar【中等】(多线程)

2024每日刷题(180) Leetcode—1115. 交替打印 FooBar C实现代码 class FooBar { private:int n;sem_t fooSem;sem_t barSem;public:FooBar(int n) {this->n n;sem_init(&fooSem, 0, 1);sem_init(&barSem, 0, 0);}~FooBar() {sem_destroy(&…

mac安装brew时踩坑解决方案

安装包 mac上如果按照git等工具可能会使用brew,例如使用:$ brew install git命令,如果电脑没有按照brew,则会提示:zsh: command not found: brew 解决方案 需要我们打开brew的官网https://brew.sh/,复制…

机器学习|Pytorch实现天气预测

机器学习|Pytorch实现天气预测 🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 电脑系统:Windows11 显卡型号:NVIDIA Quadro P620 语言环境:python 3.9.7 编译器&#x…

得物App3D创新应用引关注,世界设计之都大会启幕

近日,2024世界设计之都大会(WDCC)在上海盛大启幕。此次大会以“设计无界 新质生长”为主题,汇聚了全球设计领域的精英与前沿成果,展现了设计作为新质生产力的巨大潜力。主场展览占据了整整3个楼面,总面积达…

进程间关系与守护进程

一、进程组 1.1、什么是进程组 提到进程的概念, 其实每一个进程除了有一个进程 ID(PID)之外 还属于一 个进程组。进程组是一个或者多个进程的集合, 一个进程组可以包含多个进程。 每一 个进程组也有一个唯一的进程组 ID(PGID), 并且这个 PG…

SCI英文文献阅读工具【全文翻译】【逐句翻译】

关注B站可以观看更多实战教学视频:hallo128的个人空间 SCI英文文献阅读工具【全文翻译】【逐句翻译】 1. 全文翻译【DeepL】 适用于泛读网址:https://www.deepl.com/zh/translator/files 1.1 前提 文档大小:pdf文档不超过5M(可先…

设计模式05-创建型模式(建造者/原型/单例模式/Java)

3.4 建造者模式 3.4.1 建造者模式的定义 动机:方便创建复杂对象(一个对象中包含多个成员变量) 定义:将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。建造者模式是一步一步创建一个复杂…

计算机视觉中的最小二乘法:寻找完美交点和直线拟合

Hello,小伙伴们!今天我们要聊的是计算机视觉中的一个小技巧——使用最小二乘法来进行交点计算和直线拟合。你有没有想过,如何从一堆杂乱无章的数据点中找到那条最佳拟合直线?或者,如何确定几条直线相交的确切位置&…

OpenCV物体跟踪:使用CSRT算法实现实时跟踪

目录 简介 CSRT算法简介 实现步骤 1. 初始化摄像头和跟踪器 2. 读取视频帧和初始化跟踪 3. 实时跟踪和显示结果 4. 显示和退出 5、结果展示 总结 简介 在计算机视觉和视频处理领域,物体跟踪是一项核心技术,它在监控、人机交互、运动分析等方面…

CSS布局/简单应用

思考下面四个图片如何布局 test1 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</titl…

双十一有啥好用的物品可以推荐购买?2024不可错过的必囤好物清单!

双十一购物狂欢节即将拉开帷幕&#xff0c;许多朋友们可能还在犹豫不决&#xff0c;不知道应该选购哪些商品。别担心&#xff0c;今天我特意为大家精心准备了一份包含五款必囤好物的清单&#xff0c;希望能够帮助大家在双十一期间抢购到心仪的商品&#xff0c;享受购物的乐趣&a…

《米小圈动画成语》|在趣味中学习,在快乐中掌握成语知识!

作为一名家长&#xff0c;我一直希望孩子能够在学习的过程中既感受到乐趣&#xff0c;又能获得真正的知识。成语作为中华文化的精华&#xff0c;虽然意义深远、简洁凝练&#xff0c;但对于一个小学生来说&#xff0c;学习和理解这些言简意赅的成语无疑是一个挑战。尤其是有些成…

将本地文件上传到GIT上

上传文件时&#xff0c;先新建一个空文件&#xff0c;进行本地库初始化&#xff0c;再进行远程库克隆&#xff0c;将要上传的文件放到克隆下来的文件夹里边&#xff0c;再进行后续操作 1.在本地创建文件夹&#xff0c;将要上传的文件放在该文件下 2.在该文件页面中打开Git Bas…

ai字幕用什么软件制作?6款视频加字幕工具分享!

在视频制作和后期处理中&#xff0c;字幕的添加是一个重要的环节。随着AI技术的发展&#xff0c;越来越多的软件开始支持AI自动加字幕功能&#xff0c;使得字幕的制作变得更加简单和高效。本文将为大家介绍几款常用的AI字幕制作软件&#xff0c;并详细讲解如何使用AI自动加字幕…

TDD(测试驱动开发)是否已死?

Rails 大神、创始人 David Heinemeier Hansson 曾发文抨击TDD。 TDD is dead. Long live testing. (DHH) 此后, Kent Beck、Martin Fowler、David Hansson 三人就这个观点还举行了系列对话&#xff08;辩论&#xff09; Is TDD Dead? 笔者作为一个多年在软件测试领域摸索的人&…