机器学习|Pytorch实现天气预测

机器学习|Pytorch实现天气预测
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

电脑系统:Windows11

显卡型号:NVIDIA Quadro P620

语言环境:python 3.9.7

编译器:jupyter notebook

深度学习环境:2.17.0

一、 前期准备

1. 设置GPU

2. 导入数据

 

 

3. 划分数据集

二、构建简单的CNN网络

三、 训练模型

1. 设置超参数

2. 编写训练函数

3. 编写测试函数

4. 正式训练

四、 结果可视化

五、总结 

一、前期准备

  1. 设置GPU

    • 确保设备选择正确,GPU能够加速深度学习模型的训练。
    • 检查是否安装了正确版本的CUDA和cuDNN,并确保与PyTorch或TensorFlow等框架兼容。
    • 可以通过 torch.cuda.is_available() 来验证是否可以使用GPU。
  2. 导入数据

    • 确保数据集的路径正确,格式符合模型的输入需求(如图片、CSV等)。
    • 说明是否需要数据预处理步骤,例如归一化、调整图像大小、增强数据等。
    • 解释训练集、验证集和测试集的划分比例,以保证模型能有效泛化。
  3. 划分数据集

    • 说明数据集如何划分成训练集、验证集和测试集(例如 80:10:10)。
    • 可介绍使用 train_test_split 或其他库的方法进行划分。
    • 如果是图像数据集,使用 DataLoaderDataset 可以有助于批量加载数据并进行实时预处理。

二、构建简单的CNN网络

  • 简单描述卷积神经网络(CNN)的基本结构:输入层、卷积层、池化层、全连接层。
  • 解释卷积层如何提取特征,池化层如何减少特征图的维度。
  • 确保网络结构合理且简单,适合任务和数据集的大小。
  • 需要说明激活函数(如ReLU)以及损失函数的选择(如交叉熵损失)。

三、训练模型

  1. 设置超参数

    • 介绍模型训练中的重要超参数,如学习率(Learning Rate)、批量大小(Batch Size)、迭代次数(Epochs)等。
    • 确保说明如何选择这些超参数,例如使用网格搜索或经验值调整。
  2. 编写训练函数

    • 介绍如何定义模型的训练循环,解释正向传播、计算损失、反向传播和更新模型参数的过程。
    • 说明在训练过程中如何记录损失值,是否使用早停策略(Early Stopping)等。
  3. 编写测试函数

    • 解释测试函数的作用,是在验证集或测试集上评估模型的性能。
    • 强调在测试时要关闭梯度计算,通常使用 with torch.no_grad() 来加速推理过程并节省显存。
    • 说明如何计算评价指标(如准确率、精确率、召回率等)来衡量模型性能。
  4. 正式训练

    • 详细描述训练的步骤,包括数据加载、模型前向传播、损失计算和反向传播。
    • 描述如何在训练和测试过程中记录结果,并在每个epoch之后评估验证集性能。
    • 确保明确每一步的作用和重要性。

四、结果可视化

  • 注意事项
    1. 训练过程可视化:通过损失曲线和准确率曲线展示模型的训练效果。可以展示每个epoch的训练和验证损失、准确率的变化趋势,帮助判断模型是否收敛或过拟合。
    2. 模型性能展示:通过混淆矩阵、ROC曲线、PR曲线等可视化模型在测试集上的表现。
    3. 学习率调整策略的可视化:如使用学习率衰减或循环学习率等,可以将学习率随时间变化的趋势展示出来。
    4. 实验对比:如果有多个实验,可以用条形图、折线图展示不同实验结果的对比,帮助更直观地理解超参数的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/451793.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

得物App3D创新应用引关注,世界设计之都大会启幕

近日,2024世界设计之都大会(WDCC)在上海盛大启幕。此次大会以“设计无界 新质生长”为主题,汇聚了全球设计领域的精英与前沿成果,展现了设计作为新质生产力的巨大潜力。主场展览占据了整整3个楼面,总面积达…

进程间关系与守护进程

一、进程组 1.1、什么是进程组 提到进程的概念, 其实每一个进程除了有一个进程 ID(PID)之外 还属于一 个进程组。进程组是一个或者多个进程的集合, 一个进程组可以包含多个进程。 每一 个进程组也有一个唯一的进程组 ID(PGID), 并且这个 PG…

SCI英文文献阅读工具【全文翻译】【逐句翻译】

关注B站可以观看更多实战教学视频:hallo128的个人空间 SCI英文文献阅读工具【全文翻译】【逐句翻译】 1. 全文翻译【DeepL】 适用于泛读网址:https://www.deepl.com/zh/translator/files 1.1 前提 文档大小:pdf文档不超过5M(可先…

设计模式05-创建型模式(建造者/原型/单例模式/Java)

3.4 建造者模式 3.4.1 建造者模式的定义 动机:方便创建复杂对象(一个对象中包含多个成员变量) 定义:将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。建造者模式是一步一步创建一个复杂…

计算机视觉中的最小二乘法:寻找完美交点和直线拟合

Hello,小伙伴们!今天我们要聊的是计算机视觉中的一个小技巧——使用最小二乘法来进行交点计算和直线拟合。你有没有想过,如何从一堆杂乱无章的数据点中找到那条最佳拟合直线?或者,如何确定几条直线相交的确切位置&…

OpenCV物体跟踪:使用CSRT算法实现实时跟踪

目录 简介 CSRT算法简介 实现步骤 1. 初始化摄像头和跟踪器 2. 读取视频帧和初始化跟踪 3. 实时跟踪和显示结果 4. 显示和退出 5、结果展示 总结 简介 在计算机视觉和视频处理领域,物体跟踪是一项核心技术,它在监控、人机交互、运动分析等方面…

CSS布局/简单应用

思考下面四个图片如何布局 test1 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</titl…

双十一有啥好用的物品可以推荐购买?2024不可错过的必囤好物清单!

双十一购物狂欢节即将拉开帷幕&#xff0c;许多朋友们可能还在犹豫不决&#xff0c;不知道应该选购哪些商品。别担心&#xff0c;今天我特意为大家精心准备了一份包含五款必囤好物的清单&#xff0c;希望能够帮助大家在双十一期间抢购到心仪的商品&#xff0c;享受购物的乐趣&a…

《米小圈动画成语》|在趣味中学习,在快乐中掌握成语知识!

作为一名家长&#xff0c;我一直希望孩子能够在学习的过程中既感受到乐趣&#xff0c;又能获得真正的知识。成语作为中华文化的精华&#xff0c;虽然意义深远、简洁凝练&#xff0c;但对于一个小学生来说&#xff0c;学习和理解这些言简意赅的成语无疑是一个挑战。尤其是有些成…

将本地文件上传到GIT上

上传文件时&#xff0c;先新建一个空文件&#xff0c;进行本地库初始化&#xff0c;再进行远程库克隆&#xff0c;将要上传的文件放到克隆下来的文件夹里边&#xff0c;再进行后续操作 1.在本地创建文件夹&#xff0c;将要上传的文件放在该文件下 2.在该文件页面中打开Git Bas…

ai字幕用什么软件制作?6款视频加字幕工具分享!

在视频制作和后期处理中&#xff0c;字幕的添加是一个重要的环节。随着AI技术的发展&#xff0c;越来越多的软件开始支持AI自动加字幕功能&#xff0c;使得字幕的制作变得更加简单和高效。本文将为大家介绍几款常用的AI字幕制作软件&#xff0c;并详细讲解如何使用AI自动加字幕…

TDD(测试驱动开发)是否已死?

Rails 大神、创始人 David Heinemeier Hansson 曾发文抨击TDD。 TDD is dead. Long live testing. (DHH) 此后, Kent Beck、Martin Fowler、David Hansson 三人就这个观点还举行了系列对话&#xff08;辩论&#xff09; Is TDD Dead? 笔者作为一个多年在软件测试领域摸索的人&…

Linux——动态卷的管理

确保已经设置了对应的动态卷的驱动&#xff08;provisioner 制备器&#xff09;基于动态驱动创建对应的存储类创建PVC &#xff08;PVC 将会自动根据大小、访问模式等创建PV&#xff09;Pod的spec 中通过volumes 和 volumemounts 来完成pvc 的绑定和pvc对应pv的挂载删除pod 不…

Java基于微信小程序的公考学习平台的设计与实现,附源码+文档

博主介绍&#xff1a;✌Java老徐、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&…

新魔百和cm311-5 ZG 4+16g 卡刷语音固件教程

新魔百和cm311-5_国科6323_蓝牙版刷 准备工具&#xff1a;U盘、短接工具、 固件包&#xff1a;CM311-5-zg链接 https://pan.baidu.com/s/1f5NxmCGCO0F84RQRBrSMRg 提取码: b7f1 操作步骤&#xff1a; 1、用不大于8G U盘&#xff0c;先做FAT32&#xff0c;2048块单分区格式化后…

Yoga Pro 13s 2021款Intel处理器ITL版(82HJ)原厂Win10系统镜像下载

lenovo联想Yoga-PRO-13S笔记本电脑恢复开箱状态预装OEM系统Windows10安装包 链接&#xff1a;https://pan.baidu.com/s/1YjGCXe_Zxkwcgum3TWZx5g?pwdshqu 提取码&#xff1a;shqu 联想原装系统自带所有驱动、出厂主题壁纸、系统属性联机支持标志、系统属性专属LOGO标志、O…

桂林旅游一点通:SpringBoot平台应用

3系统分析 3.1可行性分析 通过对本桂林旅游景点导游平台实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本桂林旅游景点导游平台采用SSM框架&#xff0c;JAVA作…

C++虚函数的默认参数是静态绑定还是动态绑定

C虚函数的默认参数是静态绑定还是动态绑定 或者问&#xff1a;是在编译阶段确定的还是在运行阶段确定的 答案是&#xff1a;编译阶段&#xff0c;也就是静态绑定的 #include <iostream>class Base { public:virtual void func(int x 10) {std::cout << "Ba…

pikachu靶场CSRF-get测试报告

目录 一、测试环境 1、系统环境 2、使用工具/软件 二、测试目的 三、操作过程 1、抓包使用burp生成csrf脚本 四、源代码分析 五、结论 一、测试环境 1、系统环境 渗透机&#xff1a;本机(127.0.0.1) 靶 机&#xff1a;本机(127.0.0.1) 2、使用工具/软件 Burp sui…

字节跳动实习生投毒自家大模型细节曝光 影响到底有多大?

10月19日&#xff0c;字节跳动大模型训练遭实习生攻击一事引发广泛关注。据多位知情人士透露&#xff0c;字节跳动某技术团队在今年6月遭遇了一起内部技术袭击事件&#xff0c;一名实习生因对团队资源分配不满&#xff0c;使用攻击代码破坏了团队的模型训练任务。 据悉&#xf…