深入解析大模型RAG:检索、增强与生成的全面指南

RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索技术与语言生成模型的人工智能技术。该技术通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力,如问答、文本摘要、内容生成等。RAG模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。

一、检索增强生成(RAG)

什么是RAG**?**RAG(Retrieval-Augmented Generation,检索增强生成),RAG是一种 AI 框架,它将传统信息检索系统(例如数据库)的优势与生成式大语言模型 (LLM) 的功能结合在一起。

LLM通过将这些额外的知识与自己的语言技能相结合,可以撰写更准确、更具时效性且更贴合具体需求的文字。

什么是RAG?

**如何理解RAG?**通过上一个问题,我们知道了什么是RAG?了解到RAG是一种结合了信息检索、文本增强和文本生成的自然语言处理(NLP)的技术。

RAG的目的是通过从外部知识库检索相关信息来辅助大语言模型生成更准确、更丰富的文本内容。那我们如何理解RAG的检索、增强和生成呢?

  1. 检索:检索是RAG流程的第一步,从预先建立的知识库中检索与问题相关的信息。这一步的目的是为后续的生成过程提供有用的上下文信息和知识支撑。

  2. 增强:RAG中增强是将检索到的信息用作生成模型(即大语言模型)的上下文输入,以增强模型对特定问题的理解和回答能力。这一步的目的是将外部知识融入生成过程中,使生成的文本内容更加丰富、准确和符合用户需求。通过增强步骤,LLM模型能够充分利用外部知识库中的信息。

  3. 生成:生成是RAG流程的最后一步。这一步的目的是结合LLM生成符合用户需求的回答。生成器会利用检索到的信息作为上下文输入,并结合大语言模型来生成文本内容。

RAG的“检索、增强、生成”,谁增强了谁,谁生成了答案,主语很重要。是从知识库中检索到的问答对,增强了LLM的提示词(prompt),LLM拿着增强后的Prompt生成了问题答案。

如何理解RAG?

**如何使用RAG?**了解了什么是RGA,同步也理解了RAG的检索、增强和生成。那我们如何使用RAG呢?接下来以RAG搭建知识问答系统具体步骤为例,来讲解如何使用RAG?

  1. 数据准备与知识库构建
  • **收集数据:**首先,需要收集与问答系统相关的各种数据,这些数据可以来自文档、网页、数据库等多种来源。

  • **数据清洗:**对收集到的数据进行清洗,去除噪声、重复项和无关信息,确保数据的质量和准确性。

  • **知识库构建:**将清洗后的数据构建成知识库。这通常包括将文本分割成较小的片段(chunks),使用文本嵌入模型(如GLM)将这些片段转换成向量,并将这些向量存储在向量数据库(如FAISS、Milvus等)中。

  1. 检索模块设计:
  • **问题向量化:**当用户输入查询问题时,使用相同的文本嵌入模型将问题转换成向量。

  • **相似度检索:**在向量数据库中检索与问题向量最相似的知识库片段(chunks)。这通常通过计算向量之间的相似度(如余弦相似度)来实现。

  • **结果排序:**根据相似度得分对检索到的结果进行排序,选择最相关的片段作为后续生成的输入。

  1. 生成模块设计:
  • 上下文融合:将检索到的相关片段与原始问题合并,形成更丰富的上下文信息。

  • 大语言模型生成:使用大语言模型(如GLM)基于上述上下文信息生成回答。大语言模型会学习如何根据检索到的信息来生成准确、有用的回答。

大家可以结合自己的业务领域知识,开始搭建医疗、法律、产品知识问答。先搭建Demo,然后工作中不断完善知识库问答对。

如何使用RAG?

二、RAG的原理、流程及架构

**RAG工作原理是什么?**大型语言模型(LLM)面临两个问题,第一个问题是LLM会产生幻觉,第二个是LLM的知识中断。

  1. 知识截止:当 LLM 返回的信息与模型的训练数据相比过时时。每个基础模型都有知识截止,这意味着其知识仅限于训练时可用的数据。

  2. 幻觉:当模型自信地做出错误反应时,就会发生幻觉。

检索增强生成 (RAG) 摆脱了知识限制,整合了外部数据,从外部知识库中检索相关信息,增强模型的生成能力。

RAG工作原理是什么?

****RAG工作流程是什么?通过检索增强技术,将用户查询与索引知识融合,利用大语言模型生成准确回答。

  1. 知识准备:收集并转换知识文档为文本数据,进行预处理和索引。

  2. 嵌入与索引:使用嵌入模型将文本转换为向量,并存储在向量数据库中。

  3. 查询检索:用户查询转换为向量,从数据库中检索相关知识。

  4. 提示增强:结合检索结果构建增强提示模版。

  5. 生成回答:大语言模型根据增强模版生成准确回答。

RAG工作流程是什么?

**RAG技术架构是什么?**RAG技术架构主要由两个核心模块组成,检索模块(Retriever)和生成模块(Generator)。

  1. 检索模块(Retriever):
  • 文本嵌入:使用预训练的文本嵌入模型(如GLM)将查询和文档转换成向量表示,以便在向量空间中进行相似度计算。

  • 向量搜索:利用高效的向量搜索技术(如FAISS、Milvus等向量数据库)在向量空间中检索与查询向量最相似的文档或段落。

  • 双塔模型:检索模块常采用双塔模型(Dual-Encoder)进行高效的向量化检索。双塔模型由两个独立的编码器组成,一个用于编码查询,另一个用于编码文档。这两个编码器将查询和文档映射到相同的向量空间中,以便进行相似度计算。

  1. 生成模块(Generator):
  • 强大的生成模型:生成模块通常使用在大规模数据上预训练的生成模型(如GLM),这些模型在生成自然语言文本方面表现出色。

  • 上下文融合:生成模块将检索到的相关文档与原始查询合并,形成更丰富的上下文信息,作为生成模型的输入。

  • 生成过程:生成模型根据输入的上下文信息,生成连贯、准确且信息丰富的回答或文本。

结合高效的检索模块(Retriever)与强大的生成模型(Generator),实现基于外部知识增强的自然语言生成能力。

RAG技术架构是什么?

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/453012.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

哈工深、微信:“慢思考”超长文档翻译智能体

如今,大语言模型已经成为机器翻译任务(Machine Translation)上的新型强大工具。 然而,多数在机器翻译大语言模型(MT-LLM)上开展的研究工作都是句子层面的,每一句话都被独立进行翻译,…

训练VLM(视觉语言模型)的经验

知乎:lym 链接:https://zhuanlan.zhihu.com/p/890327005 如果可以用prompt解决,尽量用prompt解决,因为训练(精调)的模型往往通用能力会下降,训练和长期部署成本都比较高,这个成本也包…

vScode---配置Pyqt5环境--记录

前提条件: python运行环境已正常安装 1、安装Pyqt5 第三方库下载地址记录: 清华大学:https://pypi.tuna.tsinghua.edu.cn/simple 豆瓣:https://pypi.douban.com/simple 阿里云:https://mirrors.aliyun.com/pypi/simpl…

一文读懂组态图和组态软件,最浅显的解读

一、什么是组态图 组态图是指在工业自动化领域中,用来描述和展示控制系统中各个组件之间关系和工作流程的图形化表示方法。它是一个系统的框架图,通过图形符号和连接线,将各个组件(如传感器、执行器、控制器等)以及它…

linux ps和kill指令

目录 ps 命令 kill指令: 示例: 补充:管道的概念 管道的概念 管道的用途 示例 在Linux系统中,ps 和 kill 是两个非常常用的命令,用于管理和终止进程。 ps 命令 ps 命令用于显示当前系统中的进程状态。它可以提供…

责任链模式下,解决开闭原则问题实践

前言 在现代软件工程中,设计模式是解决常见问题的有效工具之一。它们吸收了前人的经验,不仅帮助开发者编写更清晰、更可维护的代码,还能促进团队之间的沟通和协作。责任链模式(Chain of Responsibility Pattern)作为一…

无人机+视频推流直播EasyCVR视频汇聚/EasyDSS平台在森林防护巡检中的解决方案

随着科技的飞速发展,无人机技术在各个领域的应用日益广泛,特别是在森林防护与巡检方面,无人机以其独特的优势,为传统林业管理带来了革命性的变化。本文将探讨无人机在森林防护巡检中的解决方案,分析其工作原理、优势及…

基于SSM+微信小程序的电子点餐管理系统(点餐1)

👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 基于SSM微信小程序的电子点餐管理系统实现了管理员及用户。管理员实现了首页、个人中心、餐品分类管理、特色餐品管理、订单信息管理、用户管理、特价餐品管理、活动订单管理、系统管理。…

【论文学习与撰写】使用endnote工具进行论文参考文献的引用与插入

目录 1、软件的安装 2、放入endnote格式文献 3、endnote里文献管理 4、论文里引用参考文献的插入 5、参考文献的格式转换,及格式的下载 1、软件的安装 关注软件管家,进行下载软件和安装软件 下载通道②百度网盘丨下载链接: https://pa…

js.矩阵置零

链接:73. 矩阵置零 - 力扣(LeetCode) 题目: 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],…

Flutter 11 Android原生项目集成Flutter Module

本文主要讲解如何在已有的Android原生老项目中集成Flutter模块。 实现流程: 1、在Android原生项目根目录下,创建Flutter Module; 2、修改Android原生项目settings.gradle,绑定 Flutter Module; 3、修改Android原生…

15分钟学Go 第6天:变量与常量

第6天:变量与常量 在Go语言中,变量和常量是编程的基础概念。理解如何定义和使用它们不仅能帮助我们管理数据,还能增强代码的可读性和可维护性。在本章中,我们将详细探讨Go语言中的变量和常量,涵盖它们的定义、使用、作…

[Xshell] Xshell的下载安装使用及连接linux过程 详解(附下载链接)

前言 Xshell.zip 链接:https://pan.quark.cn/s/5d9d1836fafc 提取码:SPn7 安装 下载后解压得到文件 安装路径不要有中文 打开文件 注意!360等软件会拦截创建注册表的行为,需要全部允许、同意。或者退出360以后再安装。 在“绿化…

spdlog学习记录

spdlog Loggers:是 Spdlog 最基本的组件,负责记录日志消息。在 Spdlog 中,一个 Logger 对象代表着一个日志记录器,应用程序可以使用 Logger 对象记录不同级别的日志消息Sinks:决定了日志消息的输出位置。在 Spdlog 中&…

程序员节的故事:在代码的海洋中遨游

#1024程序员节 | 征文# 一年一度的程序员节又来了,作为一名热爱编程的开发者,我总是期待着这个特殊的日子。10月24日,不仅是程序员们的节日,更是我们分享故事、交流技术的时刻。今年的1024征文活动让我感到无比兴奋,因…

Axure重要元件三——中继器修改数据

亲爱的小伙伴,在您浏览之前,烦请关注一下,在此深表感谢! 课程主题:中继器修改数据 主要内容:显示编辑内容、表格赋值、修改数据 应用场景:更新行、表单数据行修改 案例展示: 正文…

STM32L031F6P6基于CubeMX的串口通信调试笔记

用CubeMX创建项目 本实例用的PA14、PA13两个引脚,LPUART1。 对串口参数进行设置: 开启串口中断: 时钟源设置成内部高频时钟: 对项目进行设置: 生成代码: 在串口初始化函数中加入 __HAL_UART_ENA…

C++11 thread,mutex,condition_variable,atomic,原子操作CAS,智能指针线程安全,单例模式最简单实现方式

1.thread 在c11中,c标准委员会开发出了thread库;接下来我们先来看看这个库的使用吧; 1.1 thread类接口介绍 1.1.1 thread类构造函数 我们thread库中的thread类的构造函数可以通过直接传递回调函数与函数的参数来构造线程: int…

THP4 SOP16 芯片 高速光耦芯片

光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。 由于光耦合器输入输出间互相…

mysql主从复制及故障修复

一、主MySQL数据库的配置 分别在三台主机(chen2/10.110、chen3/10.120、chen4/10.130)中安装mysql数据,其中chen2/10.110作为主MySQL服务器,其余两台作为从MySQL服务器。 1、在主机上部署mysql数据库 详细的请看上一篇:mysql数据…