导读
本文总结了作者在ChatGLM-6B模型微调的经验,并汇总了目前开源项目&数据。
写在前面
大型语言模型横行,之前非常焦虑,现在全面拥抱。目前也有很多开源项目进行大模型微调等,笔者也做了一阵子大模型了,特此来介绍一下ChatGLM-6B模型微调经验,并汇总了一下目前开源项目&数据。笔者与很多人微调结论不同,本人在采用单指令上进行模型微调,发现模型微调之后,「并没有出现灾难性遗忘现象」。
ChatGLM-6B模型微调
模型越大对显卡的要求越高,目前主流对大模型进行微调方法有三种:Freeze方法、P-Tuning方法和Lora方法。笔者也通过这三种方法,在信息抽取任务上,对ChatGLM-6B大模型进行模型微调。为了防止大模型的数据泄露,采用一个领域比赛数据集-汽车工业故障模式关系抽取(https://www.datafountain.cn/competitions/584),随机抽取50条作为测试集。
详细代码见上面的GitHub链接,并且也被ChatGLM官方收录。
Freeze方法
Freeze方法,即参数冻结,对原始模型部分参数进行冻结操作,仅训练部分参数,以达到在单卡或不进行TP或PP操作,就可以对大模型进行训练。
微调代码,见finetuning_freeze.py,核心部分如下:
for name, param in model.named_parameters(): if not any(nd in name for nd in ["layers.27", "layers.26", "layers.25", "layers.24", "layers.23"]): param.requires_grad = False
针对模型不同层进行修改,可以自行修改。训练代码均采用DeepSpeed进行训练,可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text等,可根据自己的任务配置。
CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_freeze.py --num_train_epochs 5 --train_batch_size 2
三元组抽取的推理代码,见predict_freeze.py,其他任务可以根据自己的评价标准进行推理预测。
PT方法
PT方法,即P-Tuning方法,参考ChatGLM官方代码(https://github.com/THUDM/ChatGLM-6B/blob/main/ptuning/README.md) ,是一种针对于大模型的soft-prompt方法。
-
P-Tuning(https://arxiv.org/abs/2103.10385),仅对大模型的Embedding加入新的参数。
-
P-Tuning-V2(https://arxiv.org/abs/2110.07602),将大模型的Embedding和每一层前都加上新的参数。
微调代码,见finetuning_pt.py,核心部分如下:
config = ChatGLMConfig.from_pretrained(args.model_dir)
config.pre_seq_len = args.pre_seq_len
config.prefix_projection = args.prefix_projection model = ChatGLMForConditionalGeneration.from_pretrained(args.model_dir, config=config) for name, param in model.named_parameters(): if not any(nd in name for nd in ["prefix_encoder"]): param.requires_grad = False
当prefix_projection为True时,为P-Tuning-V2方法,在大模型的Embedding和每一层前都加上新的参数;为False时,为P-Tuning方法,仅在大模型的Embedding上新的参数。
可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text、pre_seq_len、prompt_text等, 可根据自己的任务配置。
CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_pt.py --num_train_epochs 5 --train_batch_size 2 --pre_seq_len 16
三元组抽取的推理代码,见predict_pt.py,其他任务可以根据自己的评价标准进行推理预测。
Lora方法
Lora方法,即在大型语言模型上对指定参数增加额外的低秩矩阵,并在模型训练过程中,仅训练而外增加的参数。当“秩值”远小于原始参数维度时,新增的低秩矩阵参数量很小,达到仅训练很小的参数,就能获取较好的结果。
-
Lora论文:https://arxiv.org/abs/2106.09685
-
官方代码:https://github.com/microsoft/LoRA
-
HuggingFace封装的peft库:https://github.com/huggingface/peft
微调代码,见finetuning_lora.py,核心部分如下:
model = ChatGLMForConditionalGeneration.from_pretrained(args.model_dir)
config = LoraConfig(r=args.lora_r, lora_alpha=32, target_modules=["query_key_value"], lora_dropout=0.1, bias="none", task_type="CAUSAL_LM", inference_mode=False, ) model = get_peft_model(model, config)
可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text、lora_r等,可根据自己的任务配置。
CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_lora.py --num_train_epochs 5 --train_batch_size 2 --lora_r 8
三元组抽取的推理代码,见predict_lora.py,其他任务可以根据自己的评价标准进行推理预测。
注意:对于结果需要保持一致的任务(即关掉dropout,解码关掉do_sample),需要保存模型的adapter_config.json文件中,inference_mode参数修改成false,并将模型执行model.eval()操作。主要原因是chatglm模型代码中,没有采用Conv1D函数。
三元组抽取实验结果
-
模型训练时,最大长度为768,Batch大小为2,训练轮数为5,fp16训练,采用DeepSpeed的Zero-1训练;
-
PT为官方的P-Tuning V2训练方法,PT-Only-Embedding表示仅对Embedding进行soft-prompt,Freeze仅训练模型后五层参数,Lora采用低秩矩阵方法训练,秩为8;
-
由于之前训练PT在48G-A40显卡上会出现OOM,因此之前进行PT实验时对模型开启了gradient_checkpointing_enable,使得模型显存占用变小,但训练时长增加。
-
训练示例:
prompt_text:你现在是一个信息抽取模型,请你帮我抽取出关系内容为\"性能故障\", \"部件故障\", \"组成\"和 \"检测工具\"的相关三元组,三元组内部用\"_\"连接,三元组之间用\\n分割。文本:
输入:故障现象:发动机水温高,风扇始终是低速转动,高速档不工作,开空调尤其如此。
输出:发动机_部件故障_水温高\n风扇_部件故障_低速转动
时间换空间,可用很好的解决显卡的资源问题,简单玩玩还可以,如果想要模型达到最优效果或可用快速看到效果,还不如租张A100卡,快速实验,推理阶段再用自己的小破卡。
笔者找到一家新的算力平台-揽睿星舟,单张A100仅要6.4元/小时,我翻了一圈,算是便宜的了(反正比AutoDL便宜一点,便宜一点是一点吧)。
下面实验结果均是在租的80G-A100上进行的实验,与Github里用的A40的实验结果会有些差异,主要在训练时长(纯训练速度,剔除模型保存的时间)。说实话,真的要训练一个大模型,多个A100是必不可少的,可以减少很多模型并行的操作,效果上也更好把控一些。
微调方法 | PT-Only-Embedding | PT | Freeze | Lora |
---|---|---|---|---|
显卡占用 | 37G | 56G | 24G | 39G |
总参数 | 6.259B | 7.211B | 6.255B | 6.259B |
可训练参数占比 | 0.0586% | 13.26% | 16.10% | 0.0586% |
训练耗时 | 20min | 52min | 46min | 25min |
测试结果F1 | 0.0 | 0.6283 | 0.5675 | 0.5359 |
结果分析:
-
效果为PT>Freeze>Lora>PT-Only-Embedding;
-
速度为PT-Only-Embedding>Lora>Freeze>PT;
-
PT-Only-Embedding效果很不理想,发现在训练时,最后的loss仅能收敛到2.几,而其他机制可以收敛到0.几。分析原因为,输出内容形式与原有语言模型任务相差很大,仅增加额外Embedding参数,不足以改变复杂的下游任务;
-
PT方法占用显存更大,因为也增加了很多而外参数;
-
测试耗时,采用float16进行模型推理,由于其他方法均增加了额外参数,因此其他方法的推理耗时会比Freeze方法要高。当然由于是生成模型,所以生成的长度也会影响耗时;
-
模型在指定任务上微调之后,并没有丧失原有能力,例如生成“帮我写个快排算法”,依然可以生成-快排代码;
-
由于大模型微调都采用大量instruction进行模型训练,仅采用单一的指令进行微调时,对原来其他的指令影响不大,因此并没导致原来模型的能力丧失;
-
上面测试仅代表个人测试结果。
很多同学在微调后出现了灾难性遗忘现象,但我这边并没有出现,对“翻译任务”、“代码任务”、“问答任务”进行测试,采用freeze模型,可以用test_forgetting.py进行测试,具体测试效果如下:
- 翻译任务
- 代码任务
- 问答任务
后面会把生成任务、分类任务做完,请持续关注Github,会定期更新。(太忙了,会抓紧时间更新,并且官方代码也在持续更新,如遇到代码代码调不通的情况,请及时联系我,我在github也给出了我的代码版本和模型版本)
中文开源大模型&项目
虽然出来很多大模型,但Open的&中文可直接使用的并不多,下面对中文开源大模型、数据集和项目进行一下汇总。
中文开源大模型
直接可微调,无需指令增量训练:
-
ChatGLM-6B:https://huggingface.co/THUDM/chatglm-6b
-
ChatYuan-large-v2:https://huggingface.co/ClueAI/ChatYuan-large-v2
原始模型多语言or英文,需要中文指令数据集增量训练:
-
BloomZ:https://huggingface.co/bigscience/bloomz
-
LLama:https://github.com/facebookresearch/llama
-
Flan-T5:https://huggingface.co/google/flan-t5-xxl
-
OPT:https://huggingface.co/facebook/opt-66b
中文开源指令数据
下面中文指令集,大多数从Alpaca翻译而来,请看下面项目中data目录。目前通过ChatGPT或者GPT4作为廉价标注工为自己的数据进行数据标注一个不错的思路。
-
[1]:https://github.com/LC1332/Chinese-alpaca-lora
-
[2]:https://github.com/hikariming/alpaca_chinese_dataset
-
[3]:https://github.com/carbonz0/alpaca-chinese-dataset
-
[4]:https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
-
[5]:https://github.com/LianjiaTech/BELLE
-
[6]:https://huggingface.co/datasets/JosephusCheung/GuanacoDataset
开源项目
总结下面较火的开源项目:
-
BELLE:https://github.com/LianjiaTech/BELLE
-
ChatGLM:https://github.com/THUDM/ChatGLM-6B
-
Luotuo-Chinese-LLM:https://github.com/LC1332/Luotuo-Chinese-LLM
-
stanford_alpaca:https://github.com/tatsu-lab/stanford_alpaca
总结
目前各大厂的大模型陆陆续续放出,堪称百家争鸣!个人玩家也是全面拥抱,想尽一切办法来训练微调大模型。只愿大家以后可以实现“大模型”自由。愿再无“model-as-a-service”。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓