传输层协议UDP详解

目录

一.   知识准备

1.1   传输层

1.2   重识端口号

二.   UDP协议

三.   UDP协议特点


一.   知识准备

1.1   传输层

前面已经讲过,HTTP协议是应用层协议,在此之前,我们短暂的认为HTTP是直接通过应用层与外界通信的。但是我们要知道,应用层需要向下将数据传到传输层,再由传输层向下传送。最终才能通过网络传输到接收方。

传输层负责保证可靠性传输,确保数据能够可靠地传送到接收方。

1.2   重识端口号

端口号的作用是标识主机上的一个唯一的进程。当目标主机接收到数据之后,需要自底向上进行数据的传送,最后根据端口号来确定该传给上层哪个进程。

端口号是属于传输层的概念,因此在传输层协议中就会包含与端口相关的字段。

五元组标识一个通信:

在TCP/IP协议中,用“源IP地址”、“源端口号”、“目的IP地址”、“目的端口号”、“协议号”这样一个五元组来标识一个通信。

 像上图这样,有多台主机访问服务器,这些主机中可能有多个进程在同时访问服务器。

而这台服务器收到请求之后,根据五元组分离出“源IP地址”“源端口号”“目的IP地址”“目的端口号”“协议号”这些元素。

  • 根据目的IP地址和目的端口号确定这些主机确实是想跟这台服务器通信。
  • 然后根据源IP地址和源端口号确定是哪台主机上的哪个进程想要通信。
  • 最后根据协议号确定该用什么类型进行通信。

也可以通过netstat命令查看五元组信息。

其中Local Address就是源IP和源端口号,Foreign Address就是目的IP和目的端口号。而Proto代表的就是协议类型。

端口号范围划分:

• 0 - 1023: 知名端口号, HTTP, FTP, SSH 等这些广为使用的应用层协议, 他们的端口号都是固定的。

例如:

• ssh 服务器, 使用 22 端口

• ftp 服务器, 使用 21 端口

• telnet 服务器, 使用 23 端口

• http 服务器, 使用 80 端口

• https 服务器, 使用 443

• 1024 - 65535: 操作系统动态分配的端口号. 客户端程序的端口号, 就是由操作系统从这个范围分配的。

协议号 VS  端口号:

  • 协议号是存在于IP报头当中的,其长度是8位。协议号指明了数据报所携带的数据是使用的何种协议,以便让目的主机的IP层知道应该将该数据交付给传输层的哪个协议进行处理。
  • 端口号是存在于UDP和TCP报头当中的,其长度是16位。端口号的作用是唯一标识一台主机上的某个进程。
  • 协议号是作用于传输层和网络层之间的,而端口号是作用于应用层于传输层之间的。

两个问题:

 一个端口号是否可以被多个进程绑定?

这是绝对不行的,因为我们是通过端口号来标识唯一的一个进程,如果我们将一个端口号绑定多个进程。通信时就不知道该与哪个进程通信。

一个进程是否可以绑定多个端口号? 

这个是可以的,与“端口号唯一标识一个进程”不冲突,只不过现在变成了一个进程可以由多个端口号来标识。

二.   UDP协议

网络套接字编程时用到的各种接口,是位于应用层和传输层之间的一层系统调用接口,这些接口是系统提供的,我们可以通过这些接口搭建上层应用,比如HTTP。我们经常说HTTP是基于TCP的,实际就是因为HTTP在TCP套接字编程上搭建的。

而socket接口往下的传输层实际就是由操作系统管理的,因此UDP是属于内核当中的,是操作系统本身协议栈自带的,其代码不是由上层用户编写的,UDP的所有功能都是由操作系统完成,因此网络也是操作系统的一部分。

  • 16位源端口号:表示数据从哪里来。
  • 16位目的端口号:表示数据要到哪里去。
  • 16位UDP长度:表示整个数据报(UDP首部 + UDP数据)的长度。
  • 16位UDP检验和:如果UDP报文的检验和出错,就会直接将报文丢弃。

我们在应用层看到的端口号大部分是16位的,其根本原因就是因为传输层协议当中的端口号就是16位的。

UDP如何实现报头与数据的分离?

 可以看到,报头里面只有四个部分,每个部分的长度都是16位,总共8字节。所以可以将报头看做定长的,那么只需在读取的时候将前面8字节的报头读完,剩下的就是数据。

UDP如何决定将有效载荷交付给上层哪一个协议?

UDP上层也有很多应用层协议,因此UDP必须想办法将有效载荷交给对应的上层协议,也就是交给应用层对应的进程。

应用层的每一个网络进程都会绑定一个端口号,服务端进程必须显示绑定一个端口号,客户端进程则是由系统绑定的一个端口号。UDP就是通过报头当中的目的端口号来找到对应的应用层进程的。

特别注意:内核中用哈希的方式维护了端口号与进程ID之间的映射关系,因此传输层可以通过端口号得到对应的进程ID,进而找到对应的应用层进程。 

三.   UDP协议特点

UDP传输的过程类似于寄信,其特点如下:

  • 无连接:知道对端的IP和端口号就可以直接进行通信,无需等待连接。
  • 不可靠:没有确认机制,没有重传机制;如果因为网络故障该段无法发到对方, UDP 协议层也不会给应用层返回任何错误信息。
  • 面向数据报:不能够灵活的控制读写数据的次数和数量。

 注意:报文在网络中进行路由转发时,并不是每一个报文选择的路由路径都是一样的,因此报文发送的顺序和接收的顺序可能是不同的。


面向数据报:

应用层交给 UDP 多长的报文, UDP 原样发送, 既不会拆分, 也不会合并。

用 UDP 传输 100 个字节的数据:

  • 如果发送端调用一次 sendto, 发送 100 个字节, 那么接收端也必须调用对应的 一次 recvfrom, 接收 100 个字节; 而不能循环调用 10 次 recvfrom, 每次接收 10 个字 节;

UDP的缓冲区:

  • UDP 没有真正意义上的 发送缓冲区。 调用 sendto 会直接交给内核, 由内核将数据传给网络层协议进行后续的传输动作。
  • UDP 具有接收缓冲区。 但是这个接收缓冲区不能保证收到的 UDP 报的顺序和 发送 UDP 报的顺序一致; 如果缓冲区满了, 再到达的 UDP 数据就会被丢弃。
  • UDP的socket既能读,又能写。这样的特性叫做全双工

为什么UDP要有接收缓冲区?

如果UDP没有接收缓冲区,那么就要求上层及时将UDP获取到的报文读取上去,如果一个报文在UDP没有被读取,那么此时UDP从底层获取上来的报文数据就会被迫丢弃。

一个报文从一台主机传输到另一台主机,在传输过程中会消耗主机资源和网络资源。如果UDP收到一个报文后仅仅因为上次收到的报文没有被上层读取,而被迫丢弃一个可能并没有错误的报文,这就是在浪费主机资源和网络资源。

因此UDP本身是会维护一个接收缓冲区的,当有新的UDP报文到来时就会把这个报文放到接收缓冲区当中,此时上层在读数据的时候就直接从这个接收缓冲区当中进行读取就行了,而如果UDP接收缓冲区当中没有数据那上层在读取时就会被阻塞。因此UDP的接收缓冲区的作用就是,将接收到的报文暂时的保存起来,供上层读取。

UDP使用注意事项:

我们注意到, UDP 协议首部中有一个 16 位的最大长度。 也就是说一个 UDP 能传输的数据最大长度是 64K(包含 UDP 首部)。

然而 64K 在当今的互联网环境下, 是一个非常小的数字。

如果我们需要传输的数据超过 64K, 就需要在应用层手动的分包, 多次发送, 并在接收端 手动拼装;


基于UDP的应用层协议:

  • NFS: 网络文件系统
  • TFTP: 简单文件传输协议
  • DHCP: 动态主机配置协议
  • BOOTP: 启动协议(用于无盘设备启动)
  • DNS: 域名解析协议

当然, 也包括你自己写 UDP 程序时自定义的应用层协议。


总结:

好了,到这里今天的知识就讲完了,大家有错误一点要在评论指出,我怕我一人搁这瞎bb,没人告诉我错误就寄了。

祝大家越来越好,不用关注我(疯狂暗示)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/454105.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

4本SCI/SSCI期刊更名,10月WOS更新!速看!

期刊动态 2024年10月科睿唯安期刊目录更新 2024年10月22日,科睿唯安更新了WOS期刊目录,此次更新,期刊被编辑除名11本,停止出版1本,4本更名,停产1本,新增63本。 剔除期刊 11本期刊被剔 Enginee…

go-zero系列-限流(并发控制)及hey压测

参考地址: go-zero系列-限流(并发控制):https://go-zero.dev/docs/tutorials/service/governance/limiter hey地址:https://github.com/rakyll/hey1、压测工具hey下载安装: 会安装到GOPATH/bin目录下 go install github.com/ra…

AI未来会拥有人类的情感吗,情感计算领域进展如何?

AI在情感理解方面目前还处于相对初级的阶段,但已经有了一些令人鼓舞的进展。 一般来说,AI系统可以通过自然语言处理和计算机视觉技术来检测和分析人类的情感表现,但要真正理解背后的情感原因和动机还面临很大挑战。 目前在情感计算领域,研究者们已经取得了显著的进…

重生之“我打数据结构,真的假的?”--1.顺序表(无习题)

C语言中的顺序表详细总结 1. 概述 顺序表(Sequential List)是一种线性数据结构,用于存储具有相同数据类型的一组元素。顺序表采用一段连续的存储空间,使用数组来实现,能够高效地支持随机访问操作。在 C 语言中&#…

Unity--AssestBundles--热更新

使用Node.js搭建AssestBundle服务器并验证AB包热更新 一、服务器部分 使用NodeJs作为服务器, 使用Express为基础网页模版。 当然, 使用其他的FTP,http服务器也可以, 基础逻辑是存放资源的位置。 1.下载Node.js 下载地址:https…

AI动漫翻唱项目玩法拆解,起号涨粉咔咔猛,实操干货分享

最近,一种把AI技术和动漫翻唱结合起来的视频,在各大平台火了起来,成了社交媒体的新热门。 下面,我们就来聊聊这种视频的制作方法和赚钱技巧,希望能给你的副业加点料。 一、AI动漫翻唱视频的魅力 AI动漫翻唱视频能迅…

[Luogu 4630] APIO2018 铁人两项(广义圆方树)

铁人两项 求满足存在 x → y x \rightarrow y x→y 和 y → z y \rightarrow z y→z 的不相交简单路径的有序点对 ( x , y , z ) (x, y, z) (x,y,z) 的方案数。 即,选择的路径只经过同一个点至多一次。 线性做法。 广义圆方树 可以解决一些“每个点至多经过…

MySQL进阶之(十一)MySQL事务日志-redo log

十一、MySQL事务日志-redo log 11.1 Buffer Pool11.1.1 缓存的重要性11.1.2 InnoDB 的 Buffer Pool11.1.3 InnoDB 存储引擎线程 11.2 redo 日志引入11.3 redo 日志的好处和特点11.3.1 好处11.3.2 特点 11.4 redo 日志的组成11.5 redo 日志的整体流程11.6 redo 日志的刷盘策略11…

nodejs 实现docker 精简可视化控制

地址 https://github.com/xiaobaidadada/filecat 说明 使用react 和nodejs 实现的非常轻量的服务docker管理。

YOLOv11改进-卷积-引入小波卷积WTConv 解决多尺度小目标问题

本篇文章将介绍一个新的改进机制——WTConv(小波卷积),并阐述如何将其应用于YOLOv11中,显著提升模型性能。YOLOv11模型相比较于前几个模型在检测精度和速度上有显著提升,但其仍然受卷积核感受野大小的限制。因此&#…

【Wireshark笔记】如何在Wireshark中使用过滤器去除TCP Dup ACK

【Wireshark笔记】如何在Wireshark中使用过滤器去除TCP Dup ACK 在网络分析和故障排查中,Wireshark是最常用的工具之一。当分析TCP流量时,我们经常会遇到TCP Dup ACK(重复ACK)包。这些包通常意味着网络中的丢包或重传&#xff0c…

JRT怎么从IRIS切换到PostGreSql库

1.执行M导出得到建库脚本文件 2.下载生成的脚本到本地D盘 3.修改驱动为PostGreSql 4.修改连接串 5.到PostGreSql里面创建一个jrtlis的数据库,模式为jrt 6.启动网站点击导入脚本按钮 导入完成了就可以正常使用PostGreSql库了

QToolButton工具按钮控件

QToolButton是Qt框架中的一个特殊且功能丰富的控件,它主要用于工具栏或类似场景中,为用户提供快速访问命令或选项的按钮。通常是文字或图片或者图片文字! 构造函数 explicit QToolButton(QWidget *parent nullptr); 初始化添加图片 QToolB…

Redis中String类型常见的应用场景

目录 一. 缓存功能什么是缓存?Redis的工作原理热点数据的过期策略是什么? 二. 计数功能三. 会话(session)共享Session会话是用来解决什么问题的使用Redis集中管理Session 一. 缓存功能 什么是缓存? 缓存是一种用于存储数据的计算机硬件或软件组件. 缓存核心功能是加快数据…

VSCODE 导入cubeide工程

1.下载vscode及插件STM32 VS Code Ectersion 版本号1.0.0,之后这个有导入功能。 2.等待自动安装对应插件,提示缺少什么就补什么 3.在左侧出现stm32图标。点击Import a local project导入本地项目。 4.报错 [{"resource": "/f:V11/cmak…

批量合并同名Labelme标注文件内容

假如一批数据,分两批分别标注了分割和关键点的json数据,或是分别标注了不同的类别,使用时如果要合并使用,就需要对两个同名的json文件进行合并。 json1: json2: 合并后json: 脚本内容如下: import os imp…

HubSpot的AI技术:企业营销和销售的好帮手

现在做生意,竞争真挺大的。大家都想找到更好的方法来做营销和销售。HubSpot的AI技术,就像是给我们企业配了个智能小助手,让营销和销售变得更加轻松、高效。 推荐你喜欢的东西,购物更开心 企业老板肯定知道,让客户开心…

html 登入界面,用户注册界面相关的标签及案例

案例效果图 以上界面的完整代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</titl…

C++ 游戏开发:从基础到进阶

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

Mistral AI推超强边缘AI模型Ministral 8B,支持128000个token

最近&#xff0c;法国人工智能初创公司 Mistral AI 宣布了他们的新一代语言模型 ——Ministral3B 和 Ministral8B。 这两款新模型是 “Ministraux” 系列的一部分&#xff0c;专为边缘设备和边缘计算场景而设计&#xff0c;支持高达128&#xff0c;000个 token 的上下文长度。…