论文笔记:LaDe: The First Comprehensive Last-mile Delivery Dataset from Industry

2023 KDD

1 intro

1.1 背景

  • 随着城市化进程的加快和电子商务的发展,最后一公里配送已成为一个关键的研究领域
    • 最后一公里配送,如图1所示,是指连接配送中心和客户的包裹运输过程,包括包裹的取件和配送
    • 除了对客户满意度至关重要外,最后一公里配送还是整个运输过程中最昂贵和最耗时的部分
      • 路线规划
      • 预计到达时间(ETA)预测
      • 路线预测
  • 这些研究的一个关键前提是高质量、大规模数据集的可用性。
    • 然而,在最后一公里配送研究领域,虽然已经开发了大量算法,但仍缺乏广泛认可的、公开可用的数据集
    • 因此,这一领域的研究主要集中在少数工业研究实验室中,限制了透明度并阻碍了研究进展。

1.2 论文思路

  • 提出了LaDe,这是由菜鸟收集的首个综合性最后一公里配送数据集
    • 包含了包裹的取件和配送数据
    • Cainiao-AI/LaDe · Datasets at Hugging Face
  • LaDe具有以下几个优点:
    • (1) 大规模,涵盖了21,000名快递员在6个月内配送的10,677k个包裹
      • 这是目前最大规模的公开数据集
    • (2) 全面,提供了有关包裹、位置、任务事件和快递员的详细信息
    • (3) 多样性,收集了来自不同城市的取件和配送过程的数据
    • ——>凭借这些优势,LaDe可以用于评估与最后一公里相关的广泛任务
  • 论文通过三个任务来研究其特性,包括路线预测、预计到达时间预测和时空图预测

2 相关工作

2.1 数据集视角

  • 目前没有公开可用的最后一公里配送数据集同时包含包裹取件和配送数据
  • 最接近的相关工作来自亚马逊[21](本文称为AmazonData)
    • 这是一个由亚马逊提出的快递员执行的序列数据集,旨在为亚马逊主办的最后一公里路线研究挑战提供数据支持
    • 包含了2018年亚马逊快递员在美国五个大都市区执行的9,184条历史路线
    • D. Merchán, J. Arora, J. Pachon, K. Konduri, M. Winkenbach, S. Parks, and J. Noszek, “2021 amazon last mile routing research challenge: Data set,” Transportation Science, 2022.
    • 存在三个局限性:
      • 1) 没有取件数据,仅包含包裹配送过程中的数据;
      • 2) 在时空范围和轨迹数量方面规模较小;
      • 3) 缺乏与快递员及任务事件相关的信息,无法惠及有不同研究兴趣的更广泛研究群体

2.2 应用视角

  • 广义上,最后一公里物流有四个分支
    • 1) 新兴趋势和技术,重点研究最后一公里物流中的技术解决方案和创新
      • 快递员路线及到达时间预测
        • A deep learning method for route and time prediction in food delivery service
        • Graph2route: A dynamic spatial-temporal graph neural network for pick-up and delivery route prediction
      • 自助技术
        • What’s in the parcel locker? exploring customer value in e-commerce last mile delivery
      • 无人机辅助配送
        • What’s in the parcel locker? exploring customer value in e-commerce last mile delivery
    • 2) 与最后一公里相关的数据挖掘,旨在从现实世界运营产生的数据中挖掘潜在的知识模式,以改进物流管理
      • “Discovering actual delivery locations from mis-annotated couriers’ trajectories
    • 3) 运营优化,主要关注优化最后一公里运营并做出更好的运营决策
      • 车辆路径问题
        • Last-mile delivery made practical: An efficient route planning framework with theoretical guarantees
        • Appointment scheduling and routing optimization of attended home delivery system with random customer behavior
      • 配送调度
        • “Last-mile delivery made practical: An efficient route planning framework with theoretical guarantees
      • 设施选址选择
        • “Solution of two-echelon facility location problems by approximation methods
        • “Locating collection and delivery points for goods’ last-mile travel: A case study in new zealand
    • 4) 供应链结构,关注为最后一公里物流设计结构,例如网络设计[30]
      • “Locating collection and delivery points for goods’ last-mile travel: A case study in new zealand

3 数据

3.1 数据收集

3.1.1 包裹运输流程

  • 该数据集由菜鸟网络收集.包裹运输的典型过程包括以下步骤:
    • 1,客户(发件人)通过在线平台下单取件。
    • 2,平台将订单分派给合适的快递员。
    • 3,快递员在指定时间窗口内取件并返回配送站(这构成了包裹的取件过程)。
    • 4,包裹从配送站出发,通过物流网络运输至目标配送站。
    • 5,在目标配送站,配送快递员取出包裹并送达收件人(称为包裹配送过程)。
    • 在这些步骤中,第3步和第5步被称为最后一公里配送,快递员从/向客户取件/送件。

3.1.2 取件和配送场景异同 & LaDe的两个子数据集

  • 取件和配送场景之间存在显著差异。
    • 在包裹配送过程中,分配给某快递员的包裹在快递员离开配送站前就已确定
    • 而在取件过程中,分配给快递员的包裹并不是一开始就确定的,而是随着时间推移逐步揭示的,因为客户可以随时请求取件。
      • 取件过程的动态性给研究领域带来了巨大挑战。

3.1.3 LaDe数据集

——>LaDe包含了两个子数据集,分别针对取件和配送场景,命名为LaDe-P和LaDe-D

  • 收集了在中国不同城市中产生的数百万条取件/配送数据,数据涵盖6个月的时间

  • 一个城市包含不同的区域,每个区域由多个AOI(感兴趣区域)组成,供物流管理使用
    •  快递员负责在若干指定AOI内取件或送件
    • 为了收集每个城市的数据,论文首先随机选择该城市中的30个区域。
    • 随后,论文在每个区域中随机抽取快递员,并收集所有选定快递员在6个月内的取件/配送包裹数据

3.2 数据集详情

  • 每条记录包含与取件或配送包裹相关的信息,主要涉及“谁、何地、何时”等方面。
    • 具体来说,记录中说明了哪位快递员取件或送件、包裹的位置及相应的时间。
    • 记录的信息大致可分为四类:
      • 包裹信息,记录包裹ID及时间窗口要求
      • 站点信息,如坐标、AOIID和AOI类型;
      • 快递员信息,记录快递员的ID,每位快递员都配备了个人数字助理(PDA),该设备会持续向平台报告快递员的状态(例如GPS);
      • 任务事件信息,记录包裹接受、取件或配送事件的特征,包括事件发生时间和快递员的位置信息。

3.3 数据集统计

  • a——快递员工作时间
  • b,c——包裹空间分布
  • d——数据中前五大AOI类型的分布
  • e——随机选择的10位快递员的实际到达时间
  • f——数据集中两位快递员的工作概况

3.4 数据集特征与挑战

3.4.1 大规模

  • LaDe数据集总共包含10,667k个包裹和619k条轨迹,这些轨迹由21,000名快递员生成,涵盖16,755k个GPS定位点,覆盖5个城市,跨越6个月的时间。
  • 单次取件和配送场景中,快递员一次最多可处理的包裹数分别达到95个和121个
  • 如此大规模的数据给最后一公里配送算法带来了显著挑战。

3.4.2 全面性

  • LaDe旨在提供与最后一公里配送相关的丰富信息,涵盖了各种数据类型
    • 详细的包裹信息
    • 任务事件日志
    • 快递员轨迹详细信息
    • 上下文特征
  • 如何有效利用这些综合特征来改进现有任务或启发新任务,仍然是不同领域研究人员面临的一个开放性问题。

3.4.3 多样性

  • 场景多样性——我们通过收集代表取件和配送两个场景的子数据集引入场景多样性。
  • 任务动态性(仅针对LaDe-P)。与LaDe-D不同,LaDe-P中的快递员任务在一天的开始时并未确定,而是随着取件过程的进行逐步揭示,因为客户可以随时下单。
    • 这种快递员任务的动态性在多个研究领域中带来了显著的技术挑战,动态路线优化便是一个典型例子

4 任务

4.1 路线预测

4.2 ETA

4.3  时空图 (STG) 预测

计算出特定区域在一定时间段内的包裹数量

4.4 其他应用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/457231.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

cpp的vector类

本篇将讲述vector类中的各种重要和常用函数(begin()、end()、rbegin()、rend()cbegin()、cend() 、crbegin(&a…

Vuejs设计与实现 — 渲染器核心:挂载与更新

前言 挂载 与 更新 是 渲染器 的核心功能,也是渲染器应该要提供的基本功能,而 挂载 和 更新 又是基于 VNode 虚拟节点的,因为 VNode 节点描述了其对应的 真实 DOM 应该是什么样子的。 挂载与卸载 VNode 节点 无论是 vue 还是 react 都引入…

k8s 综合项目笔记

综述 这篇笔记主要是为了记录下自己写 k8s 综合项目的过程。 由于自己之前已经写过简单的开发和运维项目,所以这里就结合一下,在搭建 k8s 集群后安装运维常用服务,比如 ansible 和 prometheus,用 NFS 实现数据存储同步&#xff0c…

鸿蒙中富文本编辑与展示

富文本在鸿蒙系统如何展示和编辑的?在文章开头我们提出这个疑问,带着疑问来阅读这篇文章。 富文本用途可以展示图文混排的内容,在日常App 中非常常见,比如微博的发布与展示,朋友圈的发布与展示,都在使用富文…

LeetCode_231. 2 的幂_java

1、题目 231. 2 的幂https://leetcode.cn/problems/power-of-two/ 给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true ;否则,返回 false 。 如果存在一个整数 x 使得 n ,则认为 n 是 2 的幂次方…

ComfyUI初体验

ComfyUI 我就不过多介绍了,安装和基础使用可以看下面大佬的视频,感觉自己靠图文描述的效果不一定好,大家看视频比较方便。 ComfyUI全球爆红,AI绘画进入“工作流时代”?做最好懂的Comfy UI入门教程:Stable D…

ArcGIS001:ArcGIS10.2安装教程

摘要:本文详细介绍arcgis10.2的安装、破解、汉化过程。 一、软件下载 安装包链接:https://pan.baidu.com/s/1T3UJ7t_ELZ73TH2wGOcfpg?pwd08zk 提取码:08zk 二、安装NET Framework 3.5 双击打开控制面板,点击【卸载程序】&…

dbt-codegen: dbt自动生成模板代码

dbt项目采用工程化思维,数据模型分层实现,支持描述模型文档和测试,非常适合大型数据工程项目。但也需要用户编写大量yaml描述文件,这个过程非常容易出错且无聊。主要表现: 手工为dbt模型编写yaml文件,这过…

STM32传感器模块编程实践(十一) ADC模数转换模块ADS1115简介及驱动源码

文章目录 一.概要二.ADS1115芯片介绍三.ADS1115芯片主要特性四.ADS1115模块接线说明五.ADS1115参考原理图六.通讯协议介绍七.STM32单片机与ADS1115模块实现电压采集实验1.硬件准备2.软件工程3.软件主要代码4.实验效果 八.源代码工程下载九.小结 一.概要 ADC,全称为…

认识和使用 Vite 环境变量配置,优化定制化开发体验

Vite 官方中文文档:https://cn.vitejs.dev/ 环境变量 Vite 内置的环境变量如下: {"MODE": "development", // 应用的运行环境"BASE_URL": "/", // 部署应用时使用的 URL 前缀"PROD": false, //应用…

JavaScript完整笔记

JS引入 JavaScript 程序不能独立运行,它需要被嵌入 HTML 中,然后浏览器才能执行 JavaScript 代码。 通过 script 标签将 JavaScript 代码引入到 HTML 中,有两种方式: 内部方式 通过 script 标签包裹 JavaScript 代码 我们将 &…

使用FRP搭建内网穿透服务(新版toml配置文件,搭配反向代理方便内网网站访问)【使用frp搭建内网穿透】

FRP(Fast Reverse Proxy)是一个高性能的反向代理应用程序,主要用于内网穿透。它允许用户将内部网络服务暴露到外部网络,适用于 NAT 或防火墙环境下的服务访问。 他是一个开源的 服务 如果大家不想用 花生壳 软件,可以尝…

卷积神经网络评价指标

1.评价指标的作用 1. 性能评估:评价指标提供了一种量化的方式来衡量CNN模型的性能。通过这些指标,我们可以了解模型在特定任务上的表现,比如图像分类、目标检测或图像分割等。 2. 模型比较:不同的模型架构或训练策略可能会产生不…

基于SSM考研助手系统的设计

管理员账户功能包括:系统首页,个人中心,学生管理,教学秘书管理,考研资讯管理,考研名师管理,考研信息管理,系统管理 教学秘书账号功能包括:系统首页,个人中心…

如何快速解决游戏提示系统中的emp.dll缺失问题

emp.dll是一个动态链接库(Dynamic Link Library, DLL)文件,这类文件在Windows操作系统中扮演着至关重要的角色。它们包含了可由多个程序同时使用的代码和数据,其主要目的是实现模块化,以便于程序的更新和动态链接。emp…

es实现自动补全

目录 自动补全 拼音分词器 安装拼音分词器 第一步:下载zip包,并解压缩 第二步:去docker找到es-plugins数据卷挂载的位置,并进入这个目录 第三步:把拼音分词器的安装包拖到这个目录下 第四步:重启es 第…

RV1126音视频学习(二)-----VI模块

文章目录 前言2.RV1126的视频输入vi模块2.1什么是VI模块2.3RV1126VI模块主要APIRK_MPI_SYS_Init()RK_MPI_VI_SetChnAttrRK_MPI_VI_EnableChnRK_S32 RK_MPI_VI_DisableChnRK_MPI_VI_StartStreamRK_MPI_SYS_GetMediaBufferRK_MPI_MB_GetPtrRK_MPI_MB_GetSizeRK_MPI_MB_ReleaseBuf…

【NOIP提高组】加分二叉树

【NOIP提高组】加分二叉树 💐The Begin💐点点关注,收藏不迷路💐 设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整…

读《认知觉醒》:浅谈费曼技巧

最近在阅读《认知觉醒》这本书,封面如下: 读到了里面对于费曼技巧的介绍(在第八章),感觉受到了一些启发,在这里分享给大家。 其实之前很早就接触过了费曼技巧,但是并没有很好的应用起来&#x…

零代码快速开发智能体 |甘肃旅游通

零代码快速开发智能体 |甘肃旅游通 本文仅用于文心智能体的活动征文 参与人:mengbei_admin 文心智能体平台是人工智能领域的佼佼者。它拥有强大的语言理解与生成能力,能精准回应各种问题,出色完成文本创作、知识问答和翻译等任…