【AI | pytorch】torch.view_as_complex的使用

torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))

1. 输入:xq

xq 是一个张量(Tensor),其形状为任意维度。通常在深度学习中,这样的张量可能是用于处理信号或复数数据的。


2. xq.float()

xq.float()xq 转换为 torch.float32 数据类型。
这一步的目的是确保张量数据类型适合接下来的操作,尤其是复数操作需要浮点类型支持。


3. xq.shape[:-1]

  • xq.shape 是张量 xq 的形状。
  • xq.shape[:-1] 获取除了最后一维之外的所有维度。

例如:如果 xq.shape(2, 3, 4), 则 xq.shape[:-1](2, 3)


4. xq.float().reshape(*xq.shape[:-1], -1, 2)

  • reshape 的作用:改变张量的形状。
  • 目标形状(*xq.shape[:-1], -1, 2)
    • *xq.shape[:-1] 保留除了最后一维外的所有维度。
    • -1 表示自动推断这一维的大小,使得总元素数量一致。
    • 2 将最后一维分成两个元素一组。
例子:

假设 xq 的形状为 (2, 3, 8),则:

  • xq.shape[:-1](2, 3)
  • reshape(*xq.shape[:-1], -1, 2) 会将 xq 转换为形状 (2, 3, 4, 2),因为原本最后一维 8 被分成了 4 组,每组有 2 个元素。

5. torch.view_as_complex()

torch.view_as_complex() 将一个形状为 (..., 2) 的张量转换为复数类型张量。

  • 假设输入张量的最后一维有两个元素 ab,则它们分别对应复数的实部和虚部。
  • 输出张量的形状为原输入的形状去掉最后一维的 2
例子:

假设输入张量形状为 (2, 3, 4, 2),则 torch.view_as_complex() 会返回形状为 (2, 3, 4) 的复数张量。


总结

这段代码的功能是:

  1. 将张量 xq 转换为浮点数。
  2. 重塑最后一维,使其能分成形状为 2 的组。
  3. 将最后一维的两组值作为复数的实部和虚部,生成复数张量。
代码功能的典型应用场景:
  • 用于处理复数信号,如频域变换(FFT)、物理仿真、或者其他涉及复数计算的任务。
示例代码:
import torch# 假设输入 xq
xq = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]])# 解析代码
result = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
print(result)

如果 xq 的形状为 (2, 2, 4),则输出结果会是一个形状为 (2, 2, 2) 的复数张量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/4578.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apache SeaTunnel 2.3.9 正式发布:多项新特性与优化全面提升数据集成能力

近日,Apache SeaTunnel 社区正式发布了最新版本 2.3.9。本次更新新增了Helm 集群部署、Transform 支持多表、Zeta新API、表结构转换、任务提交队列、分库分表合并、列转多行 等多个功能更新! 作为一款开源、分布式的数据集成平台,本次版本通过…

EasyControl:首个登陆AWS Marketplace的中国MDM先锋

在全球数字化与移动化浪潮中,企业对安全、高效的移动设备管理(MDM)需求日益增长。EasyControl作为国内MDM领域的佼佼者,凭借成熟的技术和创新的解决方案,成为国内首个成功上线亚马逊AWS Marketplace的MDM产品&#xff…

OpenCV简介、OpenCV安装

OpenCV简介、OpenCV安装 本文目录: 零、时光宝盒 一、OpenCV简介 二、OpenCV图像处理基础知识 三、OpenCV-Python环境安装 2.1、纯python环境下安装OpenCV 2.2、Anaconda管理环境下安装 OpenCV 四、如何用OpenCV 中进行读取展示图像 五、OpenCV读取图像、显…

【语言处理和机器学习】概述篇(基础小白入门篇)

前言 自学笔记,分享给语言学/语言教育学方向的,但对语言数据处理感兴趣但是尚未入门,却需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)&#xff…

ARP 表、MAC 表、路由表、跨网段 ARP

文章目录 一、ARP 表1、PC2、路由器 - AR22203、交换机 - S57004、什么样的设备会有 ARP 表? 二、MAC 表什么样的设备会有 MAC 表? 三、路由表什么样的设备会有路由表? 四、抓取跨网段 ARP 包 所谓 “透明” 就是指不用做任何配置 一、ARP 表…

Spring的IoC、Bean、DI的简单实现,难度:※※※

目录 场景描述 第一步:初始化Maven项目 第二步:Maven导入Spring包(给代码) 第三步:创建Spring配置文件 第四步 创建Bean 第五步 简单使用Bean (有代码) 第六步 通过依赖注入使用Bean&…

wireshark工具简介

目录 1 wireshark介绍 2 wireshark抓包流程 2.1 选择网卡 2.2 停止抓包 2.3 保存数据 3 wireshark过滤器设置 3.1 显示过滤器的设置 3.2 抓包过滤器 4 wireshark的封包列表与封包详情 4.1 封包列表 4.2 封包详情 参考文献 1 wireshark介绍 wireshark是非常流行的网络…

C# OpenCvSharp 部署文档矫正,包括文档扭曲/模糊/阴影等情况

目录 说明 效果 模型 项目 代码 下载 参考 C# OpenCvSharp 部署文档矫正,包括文档扭曲/模糊/阴影等情况 说明 地址:https://github.com/RapidAI/RapidUnDistort 修正文档扭曲/模糊/阴影等情况,使用onnx模型简单轻量部署&#xff0c…

编辑器Vim基本模式和指令 --【Linux基础开发工具】

文章目录 一、编辑器Vim 键盘布局二、Linux编辑器-vim使用三、vim的基本概念正常/普通/命令模式(Normal mode)插入模式(Insert mode)末行模式(last line mode) 四、vim的基本操作五、vim正常模式命令集插入模式从插入模式切换为命令模式移动光标删除文字复制替换撤销上一次操作…

LeetCode 110.平衡二叉树

题目描述 给定一个二叉树,判断它是否是平衡二叉树。 示例 1: 示例 2: 输入:root [1,2,2,3,3,null,null,4,4] 输出:false 示例 3: 输入:root [] 输出:true 提示: …

Asp .Net Core 实现微服务:集成 Ocelot+Nacos+Swagger+Cors实现网关、服务注册、服务发现

什么是 Ocelot ? Ocelot是一个开源的ASP.NET Core微服务网关,它提供了API网关所需的所有功能,如路由、认证、限流、监控等。 Ocelot是一个简单、灵活且功能强大的API网关,它可以与现有的服务集成,并帮助您保护、监控和扩展您的…

Express中间件

目录 Express中间件 中间件的概念 next函数 全局中间与局部中间件 多个中间件 中间的5个注意事项 中间的分类 应用级中间件 路由级中间件 错误级中间件 Express内置中间件 express.json express.urlencoded 第三方中间件​编辑 自定义中间件 Express中间件 中间…

Linux 高级路由与流量控制-用 tc qdisc 管理 Linux 网络带宽

大家读完记得觉得有帮助记得关注和点赞!!! 此分享内容比较专业,很多与硬件和通讯规则及队列,比较底层需要有技术功底人员深入解读。 Linux 的带宽管理能力 足以媲美许多高端、专用的带宽管理系统。 1 队列&#xff0…

要获取本地的公网 IP 地址(curl ifconfig.me)

文章目录 通过命令行查询(适用于 Linux/Mac/Windows)Linux/MacWindows 注意事项 要获取本地的公网 IP 地址,可以通过以下简单的方法: 通过命令行查询(适用于 Linux/Mac/Windows) Linux/Mac 打开终端。输入…

项目开发实践——基于SpringBoot+Vue3实现的在线考试系统(七)

文章目录 一、题库管理模块实现1、新增题目功能实现1.1 页面设计1.2 前端功能实现1.3 后端功能实现1.4 效果展示2、题目列表功能实现2.1 页面设计2.2 前端功能实现2.3 后端功能实现2.3.1 后端查询题目列表接口实现2.3.2 后端编辑试题接口实现2.4 效果展示二、代码下载一、题库管…

Python文本处理:LDA主题聚类模型

一、模型简介 LDA(Latent Dirichlet Allocation)是一种生成式概率模型,用于发现文本数据中隐藏的主题分布。本项目基于Python实现LDA主题模型,包含文本预处理、最佳主题数目选择、关键词提取、词云生成以及PyLDAvis可视化等步骤。…

4.JoranConfigurator解析logbak.xml

文章目录 一、前言二、源码解析GenericXMLConfiguratorlogback.xml解析通过SaxEvent构建节点model解析model节点DefaultProcessor解析model 三、总结 一、前言 上一篇介绍了logback模块解析logback.mxl文件的入口, 我们可以手动指定logback.xml文件的位置, 也可以使用其它的名…

直连EDI与VAN:如何选择更适合企业的数据交换方式

在推进EDI项目时,企业通常会面临两种主要的数据交换方式选择:直连EDI(Direct EDI)和增值网络VAN(Value Added Network)。那么,它们之间有什么区别?为什么我们更推荐企业使用直连EDI而…

用户中心项目教程(五)---MyBatis-Plus完成后端初始化+测试方法

文章目录 1.数据库的链接和创建2.建库建表语句3.引入依赖4.yml配置文件5.添加相对路径6.实体类的书写7.Mapper接口的定义8.启动类的指定9.单元测试10运行时的bug 1.数据库的链接和创建 下面的这个就是使用的我们的IDEA链接这个里面的数据库: 接下来就是输入这个用户…

如何使用MaskerLogger防止敏感数据发生泄露

关于MaskerLogger MaskerLogger是一款功能强大的记录工具,该工具可以有效防止敏感数据泄露的发生。 MaskerLogger旨在保护目标系统的日子安全,此格式化程序可确保你的日志安全并防止敏感数据泄露。例如使用此格式化程序,打印下列数据&#x…