1 降维和聚类
1.1 图解为什么会产生维数灾难
假如数据集包含10张照片,照片中包含三角形和圆两种形状。现在来设计一个分类器进行训练,让这个分类器对其他的照片进行正确分类(假设三角形和圆的总数是无限大),简单的,我们用一个特征进行分类:
图1.1.a
从上图可看到,如果仅仅只有一个特征进行分类,三角形和圆几乎是均匀分布在这条线段上,很难将10张照片线性分类。那么,增加一个特征后的情况会怎么样:
图1.1.b
增加一个特征后,我们发现仍然无法找到一条直线将猫和狗分开。所以,考虑需要再增加一个特征:
图1.1.c
图1.1.d
此时,可以找到一个平面将三角形和圆分开。
现在计算一下不同特征数是样本的密度:
(1)一个特征时,假设特征空间时长度为5的线段,则样本密度为 10 ÷ 5 = 2 10 \div 5 = 2 10÷5=2。
(2)两个特征时,特征空间大小为$ 5\times5 = 25$,样本密度为 10 ÷ 25 = 0.4 10 \div 25 = 0.4 10÷25=0.4。
(3)三个特征时,特征空间大小是$ 5\times5\times5 = 125$,样本密度为 10 ÷ 125 = 0.08 10 \div 125 = 0.08 10÷125=0.08。
以此类推,如果继续增加特征数量,样本密度会越来越稀疏,此时,更容易找到一个超平面将训练样本分开。当特征数量增长至无限大时,样本密度就变得非常稀疏。
下面看一下将高维空间的分类结果映射到低维空间时,会出现什么情况?
图1.1.e
上图是将三维特征空间映射到二维特征空间后的结果。尽管在高维特征空间时训练样本线性可分,但是映射到低维空间后,结果正好相反。事实上,增加特征数量使得高维空间线性可分,相当于在低维空间内训练一个复杂的非线性分类器。不过,这个非线性分类器太过“聪明”,仅仅学到了一些特例。如果将其用来辨别那些未曾出现在训练样本中的测试样本时,通常结果不太理想,会造成过拟合问题。
图1.1.f
上图所示的只采用2个特征的线性分类器分错了一些训练样本,准确率似乎没有图2.21.1.e的高,但是,采用2个特征的线性分类器的泛化能力比采用3个特征的线性分类器要强。因为,采用2个特征的线性分类器学习到的不只是特例,而是一个整体趋势,对于那些未曾出现过的样本也可以比较好地辨别开来。换句话说,通过减少特征数量,可以避免出现过拟合问题,从而避免“维数灾难”。
上图从另一个角度诠释了“维数灾难”。假设只有一个特征时,特征的值域是0到1,每一个三角形和圆的特征值都是唯一的。如果我们希望训练样本覆盖特征值值域的20%,那么就需要三角形和圆总数的20%。我们增加一个特征后,为了继续覆盖特征值值域的20%就需要三角形和圆总数的45%( 0.45 2 2 ≈ 0.2 0.452^2\approx0.2 0.4522≈0.2)。继续增加一个特征后,需要三角形和圆总数的58%( 0.58 3 3 ≈ 0.2 0.583^3\approx0.2 0.5833≈0.2)。随着特征数量的增加,为了覆盖特征值值域的20%,就需要更多的训练样本。如果没有足够的训练样本,就可能会出现过拟合问题。
通过上述例子,我们可以看到特征数量越多,训练样本就会越稀疏,分类器的参数估计就会越不准确,更加容易出现过拟合问题。“维数灾难”的另一个影响是训练样本的稀疏性并不是均匀分布的。处于中心位置的训练样本比四周的训练样本更加稀疏。
假设有一个二维特征空间,如上图所示的矩形,在矩形内部有一个内切的圆形。由于越接近圆心的样本越稀疏,因此,相比于圆形内的样本,那些位于矩形四角的样本更加难以分类。当维数变大时,特征超空间的容量不变,但单位圆的容量会趋于0,在高维空间中,大多数训练数据驻留在特征超空间的角落。散落在角落的数据要比处于中心的数据难于分类。
1.2 怎样避免维数灾难
有待完善!!!
解决维度灾难问题:
主成分分析法PCA,线性判别法LDA
奇异值分解简化数据、拉普拉斯特征映射
Lassio缩减系数法、小波分析法、
1.3 聚类和降维有什么区别与联系
聚类用于找寻数据内在的分布结构,既可以作为一个单独的过程,比如异常检测等等。也可作为分类等其他学习任务的前驱过程。聚类是标准的无监督学习。
1)在一些推荐系统中需确定新用户的类型,但定义“用户类型”却可能不太容易,此时往往可先对原有的用户数据进行聚类,根据聚类结果将每个簇定义为一个类,然后再基于这些类训练分类模型,用于判别新用户的类型。
2)而降维则是为了缓解维数灾难的一个重要方法,就是通过某种数学变换将原始高维属性空间转变为一个低维“子空间”。其基于的假设就是,虽然人们平时观测到的数据样本虽然是高维的,但是实际上真正与学习任务相关的是个低维度的分布。从而通过最主要的几个特征维度就可以实现对数据的描述,对于后续的分类很有帮助。比如对于Kaggle(数据分析竞赛平台之一)上的泰坦尼克号生还问题。通过给定一个乘客的许多特征如年龄、姓名、性别、票价等,来判断其是否能在海难中生还。这就需要首先进行特征筛选,从而能够找出主要的特征,让学习到的模型有更好的泛化性。
聚类和降维都可以作为分类等问题的预处理步骤。
但是他们虽然都能实现对数据的约减。但是二者适用的对象不同,聚类针对的是数据点,而降维则是对于数据的特征。另外它们有着很多种实现方法。聚类中常用的有K-means、层次聚类、基于密度的聚类等;降维中常用的则PCA、Isomap、LLE等。
1.4 有哪些聚类算法优劣衡量标准
不同聚类算法有不同的优劣和不同的适用条件。可从以下方面进行衡量判断:
1、算法的处理能力:处理大的数据集的能力,即算法复杂度;处理数据噪声的能力;处理任意形状,包括有间隙的嵌套的数据的能力;
2、算法是否需要预设条件:是否需要预先知道聚类个数,是否需要用户给出领域知识;
3、算法的数据输入属性:算法处理的结果与数据输入的顺序是否相关,也就是说算法是否独立于数据输入顺序;算法处理有很多属性数据的能力,也就是对数据维数是否敏感,对数据的类型有无要求。
1.5 聚类和分类有什么区别
**聚类(Clustering) **
聚类,简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此聚类通常并不需要使用训练数据进行学习,在机器学习中属于无监督学习。
**分类(Classification) **
分类,对于一个分类器,通常需要你告诉它“这个东西被分为某某类”。一般情况下,一个分类器会从它得到的训练集中进行学习,从而具备对未知数据进行分类的能力,在机器学习中属于监督学习。
1.6 不同聚类算法特点性能比较
算法名称 | 可伸缩性 | 适合的数据类型 | 高维性 | 异常数据抗干扰性 | 聚类形状 | 算法效率 |
---|---|---|---|---|---|---|
WAVECLUSTER | 很高 | 数值型 | 很高 | 较高 | 任意形状 | 很高 |
ROCK | 很高 | 混合型 | 很高 | 很高 | 任意形状 | 一般 |
BIRCH | 较高 | 数值型 | 较低 | 较低 | 球形 | 很高 |
CURE | 较高 | 数值型 | 一般 | 很高 | 任意形状 | 较高 |
K-PROTOTYPES | 一般 | 混合型 | 较低 | 较低 | 任意形状 | 一般 |
DENCLUE | 较低 | 数值型 | 较高 | 一般 | 任意形状 | 较高 |
OPTIGRID | 一般 | 数值型 | 较高 | 一般 | 任意形状 | 一般 |
CLIQUE | 较高 | 数值型 | 较高 | 较高 | 任意形状 | 较低 |
DBSCAN | 一般 | 数值型 | 较低 | 较高 | 任意形状 | 一般 |
CLARANS | 较低 | 数值型 | 较低 | 较高 | 球形 | 较低 |
1.7 四种常用聚类方法之比较
聚类就是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。
主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法。下面主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
1.8 k-means聚类算法
k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地 选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。 这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:
E = ∑ i = 1 k ∑ p ∈ C i ∥ p − m i ∥ 2 E=\sum_{i=1}^{k}\sum_{p\in C_i}\left\|p-m_i\right\|^2 E=i=1∑kp∈Ci∑∥p−mi∥2
这里E是数据中所有对象的平方误差的总和,p是空间中的点, m i m_i mi是簇 C i C_i Ci的平均值[9]。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。
算法流程:
输入:包含n个对象的数据和簇的数目k;
输出:n个对象到k个簇,使平方误差准则最小。
步骤:
(1) 任意选择k个对象作为初始的簇中心;
(2) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;
(3) 更新簇的平均值,即计算每个簇中对象的平均值;
(4) 重复步骤(2)、(3)直到簇中心不再变化;
1.9 层次聚类算法
根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。
凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。
算法流程:
注:以采用最小距离的凝聚层次聚类算法为例:
(1) 将每个对象看作一类,计算两两之间的最小距离;
(2) 将距离最小的两个类合并成一个新类;
(3) 重新计算新类与所有类之间的距离;
(4) 重复(2)、(3),直到所有类最后合并成一类。
1.10 SOM聚类算法
SOM神经网络[11]是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。 学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
算法流程:
(1) 网络初始化,对输出层每个节点权重赋初值;
(2) 从输入样本中随机选取输入向量并且归一化,找到与输入向量距离最小的权重向量;
(3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
(4) 提供新样本、进行训练;
(5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
1.11 FCM聚类算法
1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析[12]。
FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。
设数据集 X = x 1 , x 2 , . . . , x n X={x_1,x_2,...,x_n} X=x1,x2,...,xn,它的模糊 c c c划分可用模糊矩阵 U = [ u i j ] U=[u_{ij}] U=[uij]表示,矩阵 U U U的元素 u i j u_{ij} uij表示第 j ( j = 1 , 2 , . . . , n ) j(j=1,2,...,n) j(j=1,2,...,n)个数据点属于第 i ( i = 1 , 2 , . . . , c ) i(i=1,2,...,c) i(i=1,2,...,c)类的隶属度, u i j u_{ij} uij满足如下条件:
{ ∑ i = 1 c u i j = 1 ∀ j u i j ∈ [ 0 , 1 ] ∀ i , j ∑ j = 1 c u i j > 0 ∀ i \begin{equation} \left\{ \begin{array}{lr} \sum_{i=1}^c u_{ij}=1 \quad\forall~j \\u_{ij}\in[0,1] \quad\forall ~i,j \\\sum_{j=1}^c u_{ij}>0 \quad\forall ~i \end{array} \right. \end{equation} ⎩ ⎨ ⎧∑i=1cuij=1∀ juij∈[0,1]∀ i,j∑j=1cuij>0∀ i
目前被广泛使用的聚类准则是取类内加权误差平方和的极小值。即:
( m i n ) J m ( U , V ) = ∑ j = 1 n ∑ i = 1 c u i j m d i j 2 ( x j , v i ) (min)J_m(U,V)=\sum^n_{j=1}\sum^c_{i=1}u^m_{ij}d^2_{ij}(x_j,v_i) (min)Jm(U,V)=j=1∑ni=1∑cuijmdij2(xj,vi)
其中 V V V为聚类中心, m m m为加权指数, d i j ( x j , v i ) = ∣ ∣ v i − x j ∣ ∣ d_{ij}(x_j,v_i)=||v_i-x_j|| dij(xj,vi)=∣∣vi−xj∣∣。
算法流程:
(1) 标准化数据矩阵;
(2) 建立模糊相似矩阵,初始化隶属矩阵;
(3) 算法开始迭代,直到目标函数收敛到极小值;
(4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。
1.12 四种聚类算法试验
选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS数据集,IRIS数据集包含150个样本数据,分别取自三种不同 的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度、花瓣宽度,单位为cm。 在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。基于前面描述的各算法原理及流程,可初步得如下聚类结果。
聚类方法 | 聚错样本数 | 运行时间/s | 平均准确率/(%) |
---|---|---|---|
K-means | 17 | 0.146001 | 89 |
层次聚类 | 51 | 0.128744 | 66 |
SOM | 22 | 5.267283 | 86 |
FCM | 12 | 0.470417 | 92 |
注:
(1) 聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和;
(2) 运行时间:即聚类整个过程所耗费的时间,单位为s;
(3) 平均准确度:设原数据集有k个类,用 c i c_i ci表示第i类, n i n_i ni为 c i c_i ci中样本的个数, m i m_i mi为聚类正确的个数,则 m i / n i m_i/n_i mi/ni为 第i类中的精度,则平均精度为: a v g = 1 k ∑ i = 1 k m i n i avg=\frac{1}{k}\sum_{i=1}^{k}\frac{m_{i}}{n_{i}} avg=k1∑i=1knimi。