【优选算法篇】前缀之序,后缀之章:于数列深处邂逅算法的光与影

文章目录

  • C++ 前缀和详解:基础题解与思维分析
    • 前言
    • 第一章:前缀和基础应用
      • 1.1 一维前缀和模板题
        • 解法(前缀和)
        • 图解分析
        • C++代码实现
        • 易错点提示
        • 代码解读
        • 题目解析总结
      • 1.2 二维前缀和模板题
        • 解法(二维前缀和)
        • 图解分析
        • C++代码实现
        • 易错点提示
        • 代码解读
        • 题目解析总结
      • 1.3 寻找数组的中⼼下标(easy)
        • 解法(前缀和)
        • 图解分析
        • C++代码实现
        • 更简单的解法
          • 优化后的 C++代码实现
        • 易错点提示
        • 代码解读
      • 28. 除⾃⾝以外数组的乘积(medium)
        • 解法(前缀积数组)
        • 图解分析
        • C++代码实现
        • 更简单的解法
          • 优化后的 C++代码实现
        • 易错点提示
        • 代码解读
    • 写在最后

C++ 前缀和详解:基础题解与思维分析

💬 欢迎讨论:如有疑问或见解,欢迎在评论区留言互动。

👍 点赞、收藏与分享:如觉得这篇文章对您有帮助,请点赞、收藏并分享!
🚀 分享给更多人:欢迎分享给更多对 C++ 感兴趣的朋友,一起学习前缀和的基础与进阶!


前言

前缀和是一种经典的算法技巧,用于高效地计算数组的某一区间内的元素和。它通过预处理一个前缀和数组,将区间求和的问题转化为常数时间的查询操作。本篇博客将详细讲解前缀和的原理,并结合题目解析,让大家掌握这一高效的算法方法。


第一章:前缀和基础应用

1.1 一维前缀和模板题

题目链接:【模板】一维前缀和

题目描述

给定一个长度为 n 的整数数组 arrq 个查询,每个查询由两个整数 lr 组成,表示区间 [l, r]。请计算出每个区间内所有元素的和。

示例 1

  • 输入:arr = [1, 2, 3, 4, 5], q = 2, 查询区间为 [(1, 3), (2, 4)]
  • 输出:[6, 9]
  • 解释:区间 [1, 3] 的元素和为 1 + 2 + 3 = 6,区间 [2, 4] 的元素和为 2 + 3 + 4 = 9

提示

  • 1 <= n, q <= 100000
  • -10000 <= arr[i] <= 10000

解法(前缀和)

算法思路

a. 预处理前缀和数组

  • 使用 dp[i] 表示从数组起始位置到第 i 个元素的累加和。
  • 递推公式为:
    dp[i] = dp[i - 1] + arr[i];
    
  • 通过一次遍历即可构建前缀和数组,时间复杂度为 O(n)

b. 利用前缀和快速计算区间和

  • 使用前缀和数组,可以在 O(1) 的时间内计算出任意区间 [l, r] 的和:
    sum(l, r) = dp[r] - dp[l - 1];
    
  • 这个公式的核心在于利用 dp[r] 存储了 [1, r] 区间的和,而 dp[l - 1] 则存储了 [1, l-1] 区间的和,二者相减即得 [l, r] 区间内的和。

图解分析

假设 arr = [1, 2, 3, 4, 5],查询区间为 [(1, 3), (2, 4)]

  1. 前缀和数组构建

    • dp[1] = arr[1] = 1
    • dp[2] = dp[1] + arr[2] = 1 + 2 = 3
    • dp[3] = dp[2] + arr[3] = 3 + 3 = 6
    • dp[4] = dp[3] + arr[4] = 6 + 4 = 10
    • dp[5] = dp[4] + arr[5] = 10 + 5 = 15
  2. 查询区间和计算

    • 对于区间 [1, 3]sum(1, 3) = dp[3] - dp[0] = 6
    • 对于区间 [2, 4]sum(2, 4) = dp[4] - dp[1] = 9

前缀和数组

Indexarr[i]dp[i]
111
223
336
4410
5515

C++代码实现
#include <iostream>
#include <vector>
using namespace std;const int N = 100010;
vector<long long> arr(N), dp(N); // 使用 vector 存储数组和前缀和
int n, q; // n 为数组大小,q 为查询次数int main() 
{cin >> n >> q;// 读取数组元素for(int i = 1; i <= n; i++) cin >> arr[i];// 构建前缀和数组,dp[i] 表示从 arr[1] 到 arr[i] 的累加和for(int i = 1; i <= n; i++) dp[i] = dp[i - 1] + arr[i];// 处理每个查询while(q--){int l, r;cin >> l >> r;// 输出区间和 [l, r]cout << dp[r] - dp[l - 1] << endl;}return 0;
}

易错点提示
  1. 前缀和数组的下标范围

    • dp[i] 表示从 arr[1]arr[i] 的累加和,因此在构建前缀和数组时需要从 i = 1 开始,而非 0。读取 arr 时也应从 1 开始。
  2. 边界条件处理

    • l = 1 时,dp[l - 1]0。确保 dp[0] 初始化为 0,以避免边界查询时产生错误。
  3. 数组长度与内存大小

    • arrdp 的长度都最少需要定义为 n+1 以确保不会越界。尤其在大规模数据时,需要合理定义 N 以避免内存溢出。

代码解读

在这段代码中,我们首先通过输入构建了原数组 arr 和相应的前缀和数组 dp。然后通过预处理后的 dp 数组,能够快速计算出任意查询区间 [l, r] 的和。
整个过程只需要 O(n) 的时间构建前缀和数组,再通过 O(1) 的时间解决每个区间和查询,使得在多次查询场景下效率非常高。


题目解析总结

前缀和是一种非常常用的算法技巧,特别是在处理区间求和问题时,能够显著优化计算效率。通过一次遍历构建前缀和数组,我们可以在后续查询中轻松地利用前缀和的特性,实现对任意区间的快速求和。
这道题作为前缀和的模板题,帮助我们掌握了前缀和的核心思想与基本操作。通过它,我们能为后续更复杂的区间问题打下坚实的基础。


1.2 二维前缀和模板题

题目链接:【模板】二维前缀和

题目描述

给定一个大小为 n × m 的矩阵 matrixq 个查询,每个查询由四个整数 x1, y1, x2, y2 组成,表示一个子矩阵的左上角 (x1, y1) 和右下角 (x2, y2)。请计算出每个子矩阵内所有元素的和。

示例 1

  • 输入:matrix = [[1, 2], [3, 4]], q = 1, 查询区间为 [(1, 1, 2, 2)]
  • 输出:[10]
  • 解释:子矩阵包含所有元素 1 + 2 + 3 + 4 = 10

提示

  • 1 <= n, m <= 1000
  • -10000 <= matrix[i][j] <= 10000

解法(二维前缀和)

算法思路

类似于一维前缀和,我们可以预处理一个前缀和矩阵 sum,使得 sum[i][j] 表示从矩阵起点 (1, 1) 到位置 (i, j) 的所有元素的累加和。利用这个前缀和矩阵,可以在 O(1) 时间内求出任意子矩阵的和。

步骤分为两部分:

  1. 构建前缀和矩阵

    • 构建时,我们在矩阵的顶部和左侧添加一行和一列的 0,以简化边界处理。
      在这里插入图片描述

    • 前缀和矩阵的递推公式为:

      sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + matrix[i - 1][j - 1];
      
  2. 利用前缀和矩阵计算子矩阵和

    • 对于左上角 (x1, y1) 和右下角 (x2, y2) 的查询,我们可以通过以下公式计算该子矩阵的和:
      result = sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1];
      

在这里插入图片描述
类比小学就学过的求面积

在这里插入图片描述


图解分析

假设 matrix = [[1, 2], [3, 4]]q = 1,查询区间为 [(1, 1, 2, 2)]

  1. 构建前缀和矩阵

    • 原始矩阵:
      1  2
      3  4
      
    • 构建前缀和矩阵:
      sum = 
      0  0  0
      0  1  3
      0  4  10
      
  2. 查询子矩阵和

    • 对于 x1 = 1, y1 = 1, x2 = 2, y2 = 2
      result = sum[2][2] - sum[0][2] - sum[2][0] + sum[0][0] = 10 - 0 - 0 + 0 = 10
      

C++代码实现
#include <iostream>
#include <vector>
using namespace std;int main() 
{int n, m, q;cin >> n >> m >> q;vector<vector<int>> matrix(n + 1, vector<int>(m + 1, 0));vector<vector<long long>> sum(n + 1, vector<long long>(m + 1, 0));// 读取矩阵数据for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {cin >> matrix[i][j];}}// 构建前缀和矩阵for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + matrix[i][j];}}// 处理查询while(q--) {int x1, y1, x2, y2;cin >> x1 >> y1 >> x2 >> y2;long long result = sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1];cout << result << endl;}return 0;
}

易错点提示
  1. 矩阵下标的处理

    • 构建前缀和矩阵时,注意在 matrix 的基础上偏移一行和一列,以简化边界处理。查询时也需调整下标。
  2. 前缀和公式理解

    • 在计算 sum[i][j] 时,记得同时减去重复计算的 sum[i - 1][j - 1]
  3. 处理大规模输入

    • 对于 n, m 较大的输入,使用 long long 类型存储累加和,以避免整数溢出。

代码解读
  • 时间复杂度:前缀和矩阵的构建时间为 O(n * m),每次查询时间为 O(1),适用于大量查询场景。
  • 空间复杂度:前缀和矩阵 sum 需要 O(n * m) 的额外空间。

题目解析总结

二维前缀和是处理矩阵区域和问题的利器,通过一次性构建前缀和矩阵,可以高效地解决任意子矩阵的求和问题。相比于逐个元素累加的方法,前缀和能大幅减少计算次数,使得算法在面对多次查询时表现更佳。


1.3 寻找数组的中⼼下标(easy)

题目链接:724. 寻找数组的中⼼下标

题目描述

给你⼀个整数数组 nums ,请计算数组的 中⼼下标 。

数组 中⼼下标 是数组的⼀个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。

如果中⼼下标位于数组最左端,那么左侧数之和视为 0,因为在下标的左侧不存在元素。这⼀点对中⼼下标位于数组最右端同样适⽤。

如果数组有多个中⼼下标,应该返回 最靠近左边 的那⼀个。如果数组不存在中⼼下标,返回 -1

示例 1

  • 输入:nums = [1, 7, 3, 6, 5, 6]
  • 输出:3
  • 解释:
    • 中⼼下标是 3
    • 左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11
    • 右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,⼆者相等。

示例 2

  • 输入:nums = [1, 2, 3]
  • 输出:-1
  • 解释:
    • 数组中不存在满⾜此条件的中⼼下标。

示例 3

  • 输入:nums = [2, 1, -1]
  • 输出:0
  • 解释:
    • 中⼼下标是 0
    • 左侧数之和 sum = 0,(下标 0 左侧不存在元素),
    • 右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0

提示

  • 1 <= nums.length <= 10^4
  • -1000 <= nums[i] <= 1000

解法(前缀和)

算法思路

根据中⼼下标的定义,除了中⼼下标的元素外,该元素左边的「前缀和」等于该元素右边的「后缀和」。

因此,我们可以先预处理两个数组,一个表示前缀和,另一个表示后缀和。然后,通过遍历来找到满足条件的中⼼下标。

  1. 构建前缀和数组 lsum

    • lsum[i] 表示 nums 从开始到位置 i - 1 的所有元素的和,即 [0, i - 1] 区间的累加和。
    • 构建前缀和数组 lsum 的递推公式为:
      lsum[i] = lsum[i - 1] + nums[i - 1];
      
  2. 构建后缀和数组 rsum

    • rsum[i] 表示 nums 从位置 i + 1 到最后一个元素的所有元素的和,即 [i + 1, n - 1] 区间的累加和。
    • 构建后缀和数组 rsum 的递推公式为:
      rsum[i] = rsum[i + 1] + nums[i + 1];
      
  3. 枚举中⼼下标

    • 遍历数组,比较每个位置的前缀和 lsum[i] 和后缀和 rsum[i] 是否相等。如果相等,说明该位置就是中⼼下标,直接返回。
    • 若遍历完成仍无满足条件的下标,则返回 -1

图解分析

假设 nums = [1, 7, 3, 6, 5, 6]

  1. 前缀和数组构建

    • lsum[0] = 0 (表示 nums 的左侧没有元素)
    • lsum[1] = lsum[0] + nums[0] = 0 + 1 = 1
    • lsum[2] = lsum[1] + nums[1] = 1 + 7 = 8
    • lsum[3] = lsum[2] + nums[2] = 8 + 3 = 11
    • lsum[4] = lsum[3] + nums[3] = 11 + 6 = 17
    • lsum[5] = lsum[4] + nums[4] = 17 + 5 = 22
  2. 后缀和数组构建

    • rsum[5] = 0 (表示 nums 的右侧没有元素)
    • rsum[4] = rsum[5] + nums[5] = 0 + 6 = 6
    • rsum[3] = rsum[4] + nums[4] = 6 + 5 = 11
    • rsum[2] = rsum[3] + nums[3] = 11 + 6 = 17
    • rsum[1] = rsum[2] + nums[2] = 17 + 3 = 20
    • rsum[0] = rsum[1] + nums[1] = 20 + 7 = 27
  3. 查找中⼼下标

    • 遍历过程中,发现 lsum[3] == rsum[3],即下标 3 满足条件,因此输出 3

前缀和、后缀和数组

Indexnums[i]lsum[i]rsum[i]
01027
17120
23817
361111
45176
56220

C++代码实现
class Solution {
public:int pivotIndex(vector<int>& nums) {// lsum[i] 表示 [0, i - 1] 区间的累加和// rsum[i] 表示 [i + 1, n - 1] 区间的累加和int n = nums.size();vector<int> lsum(n), rsum(n);// 预处理前缀和数组for(int i = 1; i < n; i++)lsum[i] = lsum[i - 1] + nums[i - 1];// 预处理后缀和数组for(int i = n - 2; i >= 0; i--)rsum[i] = rsum[i + 1] + nums[i + 1];// 查找中⼼下标for(int i = 0; i < n; i++) {if(lsum[i] == rsum[i])return i;}return -1;}
};

更简单的解法

该问题还可以通过更为简洁的解法实现,仅需一个变量记录累加的前缀和,节省空间。

优化思路

遍历数组时,如果一个位置 i 满足 2 * 前缀和 + nums[i] == 总和,则它就是中心下标。其原理在于:

  • 对于中心下标 i,数组的左侧和 tmp 与右侧和(总和 - tmp - nums[i])相等。
  • 即满足条件 2 * tmp + nums[i] == 总和

优化后的 C++代码实现
class Solution {
public:int pivotIndex(vector<int>& nums) {int totalSum = 0, tmp = 0;// 计算总和for(int num : nums) {totalSum += num;}// 遍历数组,判断中心下标条件for(int i = 0; i < nums.size(); i++) {if(2 * tmp + nums[i] == totalSum) {return i; // 找到中心下标}tmp += nums[i]; // 更新前缀和}return -1; // 没有找到中心下标}
};

易错点提示
  1. 前缀和和后缀和的下标范围

    • lsum[i] 表示 [0, i - 1] 区间累加和,而 rsum[i] 表示 [i + 1, n - 1] 区间累加和。因此,遍历中我们直接使用 lsum[i] == rsum[i] 即可判断条件。
  2. 边界处理

    • 若中心下标在数组最左端或最右端,需要确保对应的 lsumrsum0,这样才能保证正确的判断。
  3. 多种中心下标

    • 如果存在多个中心下标,返回最左边的那个,因此遍历时找到第一个满足条件的下标即返回。

代码解读

我们先通过遍历构建了 lsumrsum 数组,然后再次遍历数组,找到第一个满足 lsum[i] == rsum[i] 的位置。

  • 时间复杂度O(n),遍历数组的次数为常数次,适合于长度较大的数组。
  • 空间复杂度O(n),额外的前缀和和后缀和数组 lsumrsum

对于优化后的解法:

  • 时间复杂度O(n),仅需一次遍历。
  • 空间复杂度O(1),只使用一个临时变量记录前缀和,显著节省了空间。

28. 除⾃⾝以外数组的乘积(medium)

题目链接:238. 除⾃⾝以外数组的乘积

题目描述

给你⼀个整数数组 nums,返回数组 answer,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积。

题⽬数据保证数组 nums 中任意元素的全部前缀元素和后缀的乘积都在 32 位整数范围内。

请不要使⽤除法,且在 O(n) 时间复杂度内完成此题。

示例 1

  • 输入:nums = [1, 2, 3, 4]
  • 输出:[24, 12, 8, 6]

示例 2

  • 输入:nums = [-1, 1, 0, -3, 3]
  • 输出:[0, 0, 9, 0, 0]

提示

  • 2 <= nums.length <= 10^5
  • -30 <= nums[i] <= 30
  • 保证数组 nums 中任意元素的全部前缀元素和后缀的乘积都在 32 位整数范围内。

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题⽬吗?(出于对空间复杂度分析的⽬的,输出数组不被视为额外空间。)


解法(前缀积数组)

算法思路

由于题目要求不能使用除法,同时要求 O(n) 的时间复杂度,因此我们不能用求出整个数组的乘积然后除以单个元素的方式求解。

可以利用前缀和思想,使用两个数组来记录每个元素的前缀积后缀积,然后将两者相乘得到每个元素除自身以外的乘积。

  1. 定义前缀积数组 lprod

    • lprod[i] 表示 nums 从开始到 i - 1 的所有元素的乘积,即 [0, i - 1] 区间内所有元素的乘积。
    • 构建前缀积数组 lprod 的递推公式为:
      lprod[i] = lprod[i - 1] * nums[i - 1];
      
  2. 定义后缀积数组 rprod

    • rprod[i] 表示 numsi + 1 到数组末尾的所有元素的乘积,即 [i + 1, n - 1] 区间内所有元素的乘积。
    • 构建后缀积数组 rprod 的递推公式为:
      rprod[i] = rprod[i + 1] * nums[i + 1];
      
  3. 计算结果数组

    • 遍历 nums,计算每个位置 i 的结果 ret[i]lprod[i] * rprod[i]
    • 因为 lprod[i] 包含的是 nums[0]nums[i - 1] 的乘积,而 rprod[i] 包含的是 nums[i + 1] 到末尾的乘积,两者相乘即为除 nums[i] 外的所有元素乘积。

图解分析

假设 nums = [1, 2, 3, 4],期望的结果为 [24, 12, 8, 6]

  1. 前缀积数组构建

    • lprod[0] = 1 (初始条件,表示没有元素的乘积)
    • lprod[1] = lprod[0] * nums[0] = 1 * 1 = 1
    • lprod[2] = lprod[1] * nums[1] = 1 * 2 = 2
    • lprod[3] = lprod[2] * nums[2] = 2 * 3 = 6
  2. 后缀积数组构建

    • rprod[3] = 1 (初始条件,表示没有元素的乘积)
    • rprod[2] = rprod[3] * nums[3] = 1 * 4 = 4
    • rprod[1] = rprod[2] * nums[2] = 4 * 3 = 12
    • rprod[0] = rprod[1] * nums[1] = 12 * 2 = 24
  3. 计算最终结果

    • ret[0] = lprod[0] * rprod[0] = 1 * 24 = 24
    • ret[1] = lprod[1] * rprod[1] = 1 * 12 = 12
    • ret[2] = lprod[2] * rprod[2] = 2 * 4 = 8
    • ret[3] = lprod[3] * rprod[3] = 6 * 1 = 6

前缀积、后缀积数组

Indexnums[i]lprod[i]rprod[i]ret[i]
0112424
1211212
23248
34616

C++代码实现
class Solution {
public:vector<int> productExceptSelf(vector<int>& nums) {int n = nums.size();vector<int> lprod(n, 1), rprod(n, 1), ret(n);// 构建前缀积数组for(int i = 1; i < n; i++) {lprod[i] = lprod[i - 1] * nums[i - 1];}// 构建后缀积数组for(int i = n - 2; i >= 0; i--) {rprod[i] = rprod[i + 1] * nums[i + 1];}// 计算结果数组for(int i = 0; i < n; i++) {ret[i] = lprod[i] * rprod[i];}return ret;}
};

更简单的解法

优化思路

我们可以进一步优化空间复杂度到 O(1)。通过仅使用一个 ret 数组来存储结果,并利用它保存前缀积,再遍历一次通过累积的后缀积来更新结果:

  1. 计算前缀积并保存到 ret
  2. 遍历并乘以后缀积:在遍历过程中同时更新后缀积的值,使每个位置的结果在不需要额外的 lprodrprod 数组的情况下得到。

优化后的 C++代码实现
class Solution {
public:vector<int> productExceptSelf(vector<int>& nums) {int n = nums.size();vector<int> ret(n, 1);// 计算前缀积for(int i = 1; i < n; i++) {ret[i] = ret[i - 1] * nums[i - 1];}// 计算后缀积并更新结果int suffixProd = 1;for(int i = n - 1; i >= 0; i--) {ret[i] *= suffixProd;suffixProd *= nums[i];}return ret;}
};

易错点提示
  1. 初始条件

    • lprod[0]rprod[n-1] 都初始化为 1,表示没有元素的乘积。
  2. 空间优化

    • 优化解法中只使用 ret 数组存储前缀积,后续遍历时逐个乘以后缀积。
  3. 避免溢出

    • 题目保证元素乘积在 32 位整数范围内,但实际操作时要避免大数溢出,注意数据类型的使用。

代码解读

在此解法中,我们通过构建前缀积和后缀积的方式实现了在 O(n) 时间复杂度下计算每个位置的乘积。在优化方案中,通过巧妙地在结果数组中存储前缀积并逐步累加后缀积,实现了空间复杂度的优化。

  • 时间复杂度O(n),无论是初始计算前缀积和后缀积,还是单次遍历,时间复杂度都为 O(n)
  • 空间复杂度:原方案为 O(n),优化方案达到 O(1) 的额外空间复杂度。

写在最后

在这片数列的流动之中,我们从前缀和的入门,渐次深入,直抵算法思想的核心。四道基础题如同桥梁,串联起前缀和与后缀积的巧妙应用,从区间求和的简明优雅到排除自身后的乘积演算,每一步都指向数据处理的无限可能。这是算法的序曲,数字的暗涌,如流水般轻盈而深邃。随着思维渐入佳境,我们将在下篇中进一步探索数列的复杂美,揭开更深层的优化思路,与算法之光同行。

以上就是关于【优选算法篇】前缀之序,后缀之章:于数列深处邂逅算法的光与影的内容啦,各位大佬有什么问题欢迎在评论区指正,您的支持是我创作的最大动力!❤️
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/459807.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Topaz Video AI for Mac 视频无损放大软件安装教程【保姆级,操作简单轻松上手】

Mac分享吧 文章目录 Topaz Video AI for Mac 视频无损放大软件 安装完成&#xff0c;软件打开效果一、Topaz Video AI 视频无损放大软件 Mac电脑版——v5.3.5⚠️注意事项&#xff1a;1️⃣&#xff1a;下载软件2️⃣&#xff1a;安装软件&#xff0c;将安装包从左侧拖入右侧文…

CNAS软件测试的好处有哪些?上海软件测试中心推荐

在进行软件测试或其他项目检测需要选择软件测试中心时&#xff0c;我们常常会把该公司有无资质认证考虑进去。那么CNAS认可作为检测机构或实验室的一项重要资质认证&#xff0c;我们可能会产生疑问&#xff1a;CNAS认可什么意思?CNAS软件测试又有什么好处呢? 1、CNAS认可是什…

【51 Pandas+Pyecharts | 深圳市共享单车数据分析可视化】

文章目录 &#x1f3f3;️‍&#x1f308; 1. 导入模块&#x1f3f3;️‍&#x1f308; 2. Pandas数据处理2.1 读取数据2.2 查看数据信息2.3 处理起始时间、结束时间2.4 增加骑行时长区间列2.5 增加骑行里程区间列 &#x1f3f3;️‍&#x1f308; 3. Pyecharts数据可视化3.1 各…

AMBA之AXI 总线

AMBA概述 AMBA&#xff08;Advanced Microcontroller Bus Architecture&#xff09;是ARM公司开发的一种高级微控制器总线架构&#xff0c;用于连接处理器、存储器和外设的通信。AMBA总线架构定义了一组协议和接口&#xff0c;用于实现高性能、低功耗、可扩展的系统设计。 AM…

Amcor 如何借助 Liquid UI 实现SAP PM可靠性

背景介绍 安姆科是塑料行业的全球领军企业&#xff0c;该企业认识到 SAP 工厂维护&#xff08;SAP PM&#xff09;对于确保高效的维护管理的重要性。 在诸如制造业等高度依赖机械设备的行业中&#xff0c;SAP PM是一种通过数据驱动决策来最大限度减少停机时间、降低间接成本、…

【C语言】预处理(预编译)详解(下)(C语言最终篇)

文章目录 一、#和##1.#运算符2.##运算符 二、预处理指令#undef三、条件编译1.单分支条件编译2.多分支条件编译3.判断符号是否被定义4.判断符号是否没有被定义 四、头文件的包含1.库头文件的包含2.本地头文件的包含3.嵌套包含头文件的解决方法使用条件编译指令使用预处理指令#pr…

宠物空气净化器哪个牌子好?有没有噪音低的宠物空气净化器推荐?

如今随着社会竞争越来越激烈&#xff0c;不少人开始焦虑内耗&#xff0c;但为了能更好的生活&#xff0c;养宠物便成为不少人的排忧解乏的方法。 我也不例外&#xff0c;作为一名996社畜&#xff0c;天刚亮就出门&#xff0c;天黑很久才回家&#xff0c;所以选择养猫来陪我度过…

C++设计模式创建型模式———生成器模式

文章目录 一、引言二、生成器/建造者模式三、总结 一、引言 上一篇文章我们介绍了工厂模式&#xff0c;工厂模式的主要特点是生成对象。当对象较简单时&#xff0c;可以使用简单工厂模式或工厂模式&#xff1b;而当对象相对复杂时&#xff0c;则可以选择使用抽象工厂模式。 工…

创作三周年:在忙碌中寻找灵感与快乐

目录 机缘 收获 技能的提升 粉丝的积累 正向的反馈 同行的伙伴 日常 运动 旅行 生活 憧憬 结语 机缘 不知不觉已经成为创作者3年了&#xff0c;这一路走来&#xff0c;有过高峰和低谷&#xff0c;但始终让我坚持的&#xff0c;是最初那份简单的初心&#xff1a;我…

C#从零开始学习(用户界面)(unity Lab4)

这是书本中第四个unity Lab 在这次实验中,将学习如何搭建一个开始界面 分数系统 点击球,会增加分数 public void ClickOnBall(){Score;}在OneBallBehaviour类添加下列方法 void OnMouseDown(){GameController controller Camera.main.GetComponent<GameController>();…

分布式搜索引擎elasticsearch操作文档操作介绍

1.DSL查询文档 elasticsearch的查询依然是基于JSON风格的DSL来实现的。 1.1.DSL查询分类 Elasticsearch提供了基于JSON的DSL&#xff08;Domain Specific Language&#xff09;来定义查询。常见的查询类型包括&#xff1a; 查询所有&#xff1a;查询出所有数据&#xff0c;…

软件系统安全保证措施,质量保证措施方案(Word原件套用)

系统安全保证措施是构建稳固防御体系的核心&#xff0c;旨在全方位保障信息系统的安全性。以下是对这七项措施的简要概述&#xff1a; 一、身份鉴别&#xff1a;采用多种认证方式&#xff0c;如密码、生物识别等&#xff0c;确保用户身份的准确无误&#xff0c;防止非法入侵。 …

玩转Docker | 使用Docker部署捕鱼网页小游戏

玩转Docker | 使用Docker部署捕鱼网页小游戏 一、项目介绍项目简介项目预览 二、系统要求环境要求环境检查Docker版本检查检查操作系统版本 三、部署捕鱼网页小游戏下载镜像创建容器检查容器状态下载项目内容查看服务监听端口安全设置 四、访问捕鱼网页小游戏五、总结 一、项目…

局域网 docker pull 使用代理拉取镜像

局域网 docker pull 使用代理拉取镜像 1、需求&#xff1a; 我有win主机&#xff0c;上面装有代理可连接dockerhub&#xff1b;我另有linux主机&#xff0c;直接pull因墙失败&#xff0c;想走win的代理访问dockerhub拉镜像&#xff1b;两台主机在同一个局域网中&#xff1b; …

c语言中结构体传参和实现位段

结构体传参 有两种方法: #include<stdio.h> struct S {int data[1000];int num; }; //结构体传参 void print1(struct S s) {printf("%d\n",s.num); } //结构体地址传参 void print2(struct S *ps) {printf("%d\n",ps->num); }int main() {pr…

2024年10月HarmonyOS应用开发者基础认证全新题库

注意事项&#xff1a;切记在考试之外的设备上打开题库进行搜索&#xff0c;防止切屏三次考试自动结束&#xff0c;题目是乱序&#xff0c;每次考试&#xff0c;选项的顺序都不同 这是基础认证题库&#xff0c;不是高级认证题库注意看清楚标题 高级认证题库地址&#xff1a;20…

HTML3D旋转相册

文章目录 序号目录1HTML满屏跳动的爱心(可写字)2HTML五彩缤纷的爱心3HTML满屏漂浮爱心4HTML情人节快乐

Depcheck——专门用于检测 JavaScript 和 Node.js 项目中未使用依赖项的工具

文章目录 Depcheck 是什麽核心功能&#x1f4da;检测未使用的依赖&#x1f41b;检测缺失的依赖✨支持多种文件类型&#x1f30d;可扩展性 安装与使用1. 安装 Depcheck2. 使用 Depcheck Depcheck 的应用总结项目源码&#xff1a; Depcheck 是什麽 来看一个常见错误场景&#x1…

Chrome和Firefox哪款浏览器的密码管理更安全

在当今数字化时代&#xff0c;浏览器已成为我们日常生活中不可或缺的工具。其中&#xff0c;谷歌Chrome和Mozilla Firefox是两款广受欢迎的浏览器。除了浏览网页外&#xff0c;它们还提供了密码管理功能&#xff0c;帮助用户保存和管理登录凭证。然而&#xff0c;关于哪款浏览器…

Camp4-L0:Linux 前置基础

书生浦语大模型实战营Camp4-L0:Linux前置基础 教程地址&#xff1a;https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/linux任务地址&#xff1a;https://github.com/InternLM/Tutorial/blob/camp4/docs/L0/linux/task.md 任务描述完成所需时间闯关任务完成SSH连接与…