LINUX IIC总线驱动-设备框架

Linux I2C 驱动框架简介

IMX6ULL裸机篇中编写传感器AP3216C 驱动的时候,我们编写了四个文件:bsp_i2c.c、 bsp_i2c.h、bsp_ap3216c.c 和 bsp_ap3216c.h。编写IIC控制器驱动,bsp_i2c.c和bsp_i2c.h为IIC外设驱动。向外提供i2c_master_transfer函数;bsp_3216c.c和bsp_3216c.h为IIC设备驱动。其中前两个是 I.MX6U 的 IIC 接口驱动,后两个文 件是 AP3216C 这个 I2C 设备驱动文件。相当于有两部分驱动组成:

①、I2C 主机驱动
②、I2C 设备驱动

对于 I2C 主机驱动,一旦编写完成就不需要再做修改,其他的 I2C 设备直接调用主机驱动 提供的 API 函数完成读写操作即可。这个正好符合 Linux 的驱动分离与分层的思想,因此 Linux 内核也将 I2C 驱动分为两部分:

①、I2C 总线驱动,I2C 总线驱动就是 SOC 的 I2C 控制器驱动,也叫做 I2C 适配器驱动
②、I2C 设备驱动,I2C 设备驱动就是针对具体的 I2C 设备而编写的驱动

========================

I2C 总线驱动

首先来看一下 I2C 总线,在讲 platform 的时候就说过,platform 是虚拟出来的一条总线, 目的是为了实现总线、设备、驱动框架。对于 I2C 而言,不需要虚拟出一条总线,直接使用 I2C 总线即可。I2C 总线驱动重点是 I2C 适配器(也就是 SOC 的 I2C 接口控制器)驱动,这里要用到 两个重要的数据结构:i2c_adapteri2c_algorithm,Linux 内核将 SOC 的 I2C 适配器(控制器) 抽象成 i2c_adapter,i2c_adapter 结构体定义在 include/linux/i2c.h 文件中,结构体内容如下:

struct i2c_adapter {struct module *owner;unsigned int class; /* classes to allow probing for */const struct i2c_algorithm *algo; /* 总线访问算法 */void *algo_data;/* data fields that are valid for all devices */struct rt_mutex bus_lock;int timeout; /* in jiffies */int retries;struct device dev; /* the adapter device */int nr;char name[48];struct completion dev_released;struct mutex userspace_clients_lock;struct list_head userspace_clients;struct i2c_bus_recovery_info *bus_recovery_info;const struct i2c_adapter_quirks *quirks;};

 const struct i2c_algorithm *algo

i2c_algorithm 类型的指针变量 algo,对于一个 I2C 适配器,肯定要对外提供读 写 API 函数,设备驱动程序可以使用这些 API 函数来完成读写操作。i2c_algorithm 就是 I2C 适 配器与 IIC 设备进行通信的方法。 i2c_algorithm 结构体定义在 include/linux/i2c.h 文件中,内容如下(删除条件编译):

 struct i2c_algorithm {
......int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs,int num);int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,unsigned short flags, char read_write,u8 command, int size, union i2c_smbus_data *data);/* To determine what the adapter supports */u32 (*functionality) (struct i2c_adapter *);
......};

master_xfer 就是 I2C 适配器的传输函数,可以通过此函数来完成与 IIC 设备之 间的通信。smbus_xfer 就是 SMBUS 总线的传输函数。 综上所述,I2C 总线驱动,或者说 I2C 适配器驱动的主要工作就是初始化 i2c_adapter 结构体变量,然后设置 i2c_algorithm 中的 master_xfer 函数。完成以后通过 i2c_add_numbered_adapteri2c_add_adapter 这两个函数向系统注册设置好的 i2c_adapter,这两个函数的原型如下:

int i2c_add_adapter(struct i2c_adapter *adapter)
int i2c_add_numbered_adapter(struct i2c_adapter *adap)

这两个函数的区别在于 i2c_add_adapter 使用动态的总线号,而 i2c_add_numbered_adapter 使用静态总线号。函数参数和返回值含义如下:
adapter 或 adap:要添加到 Linux 内核中的 i2c_adapter,也就是 I2C 适配器。返回值:0,成功;负值,失败。
如果要删除 I2C 适配器的话使用 i2c_del_adapter 函数即可,函数原型如下:

void i2c_del_adapter(struct i2c_adapter * adap)

函数参数和返回值含义如下:
adap:要删除的 I2C 适配器。
返回值:无。

关于 I2C 的控制器或适配器驱动就到这里,一般 SOC 的 I2C 总线驱动都是由半 导体厂商编写的,比如 I.MX6U 的 I2C 适配器驱动 NXP 已经编写好了,这个不需要用户去编写。因此 I2C 总线驱动对我们这些 SOC 使用者来说是被屏蔽掉的,我们只要专注于 I2C 设备驱动即可。除非你是在半导体公司上班,工作内容就是写 I2C 适配器驱动。

===========================================

I2C 设备驱动

I2C 设备驱动重点关注两个数据结构:i2c_client 和 i2c_driver,根据总线、设备和驱动模型, I2C 总线上一小节已经讲了。还剩下设备和驱动,i2c_client 就是描述设备信息的,i2c_driver 描述驱动内容,类似于 platform_driver

i2c_client 结构体

i2c_client 结构体定义在 include/linux/i2c.h 文件中,内容如下:

struct i2c_client {unsigned short flags; /* 标志 */unsigned short addr; /* 芯片地址,7 位,存在低 7 位*/
......char name[I2C_NAME_SIZE]; /* 名字 */struct i2c_adapter *adapter; /* 对应的 I2C 适配器 */struct device dev; /* 设备结构体 */int irq; /* 中断 */struct list_head detected;
......};

一个设备对应一个 i2c_client,每检测到一个 I2C 设备就会给这个 I2C 设备分配一个 i2c_client。

i2c_driver 结构体 

i2c_driver 类似 platform_driver,是我们编写 I2C 设备驱动重点要处理的内容,i2c_driver 结 构体定义在 include/linux/i2c.h 文件中,内容如下:

 struct i2c_driver {unsigned int class;/* Notifies the driver that a new bus has appeared. You should * avoid using this, it will be removed in a near future.*/int (*attach_adapter)(struct i2c_adapter *) __deprecated;/* Standard driver model interfaces */int (*probe)(struct i2c_client *, const struct i2c_device_id *);int (*remove)(struct i2c_client *);/* driver model interfaces that don't relate to enumeration */void (*shutdown)(struct i2c_client *);/* Alert callback, for example for the SMBus alert protocol.* The format and meaning of the data value depends on the * protocol.For the SMBus alert protocol, there is a single bit * of data passed as the alert response's low bit ("event flag"). */void (*alert)(struct i2c_client *, unsigned int data);/* a ioctl like command that can be used to perform specific 
* functions with the device.*/int (*command)(struct i2c_client *client, unsigned int cmd,oid *arg);struct device_driver driver;const struct i2c_device_id *id_table;/* Device detection callback for automatic device creation */int (*detect)(struct i2c_client *, struct i2c_board_info *);const unsigned short *address_list;struct list_head clients;};

int (*probe)(struct i2c_client *, const struct i2c_device_id *),当 I2C 设备和驱动匹配成功以后 probe 函数就会执行,和 platform 驱动一样。

struct device_driver driverdevice_driver 驱动结构体,如果使用设备树的话,需要设置 device_driverof_match_table 成员变量,也就是驱动的兼容(compatible)属性。

const struct i2c_device_id *id_table,id_table 是传统的、未使用设备树的设备匹配 ID 表。 对于我们 I2C 设备驱动编写人来说,重点工作就是构建 i2c_driver,构建完成以后需要向 Linux 内核注册这个 i2c_driver。i2c_driver 注册函数为 int i2c_register_driver,此函数原型如下:

int i2c_register_driver(struct module *owner, struct i2c_driver *driver)

函数参数和返回值含义如下:
owner:一般为 THIS_MODULE
driver:要注册的 i2c_driver
返回值:0,成功;负值,失败。
另外 i2c_add_driver 也常常用于注册 i2c_driver,i2c_add_driver 是一个宏,定义如下:

 #define i2c_add_driver(driver) \i2c_register_driver(THIS_MODULE, driver)

i2c_add_driver 就是对 i2c_register_driver 做了一个简单的封装,只有一个参数,就是要注册的 i2c_driver。 注销 I2C 设备驱动的时候需要将前面注册的 i2c_driver 从 Linux 内核中注销掉,需要用到 i2c_del_driver 函数,此函数原型如下:

void i2c_del_driver(struct i2c_driver *driver)

函数参数和返回值含义如下:
driver:要注销的 i2c_driver。
返回值:无。
i2c_driver 的注册示例代码如下:

/* i2c 驱动的 probe 函数 */
static int xxx_probe(struct i2c_client *client,
const struct i2c_device_id *id){/* 函数具体程序 */return 0;}/* i2c 驱动的 remove 函数 */static int xxx_remove(struct i2c_client *client){/* 函数具体程序 */return 0;}/* 传统匹配方式 ID 列表 */static const struct i2c_device_id xxx_id[] = {{"xxx", 0}, {}};/* 设备树匹配列表 */static const struct of_device_id xxx_of_match[] = {{ .compatible = "xxx" },{ /* Sentinel */ }};/* i2c 驱动结构体 */static struct i2c_driver xxx_driver = {.probe = xxx_probe,.remove = xxx_remove,.driver = {.owner = THIS_MODULE,.name = "xxx",.of_match_table = xxx_of_match,},.id_table = xxx_id,};/* 驱动入口函数 */static int __init xxx_init(void){int ret = 0;ret = i2c_add_driver(&xxx_driver);return ret;}/* 驱动出口函数 */
static void __exit xxx_exit(void){i2c_del_driver(&xxx_driver);}module_init(xxx_init);module_exit(xxx_exit);

i2c_device_id 无设备树的时候匹配 ID 表

of_device_id 设备树所使用的匹配表

i2c_driver 当 I2C 设备和 I2C 驱动匹配成功以后 probe 函数就会执行,这些 和 platform 驱动一样,probe 函数里面基本就是标准的字符设备驱动那一套了                        
 

I2C 设备和驱动匹配过程

I2C 设备和驱动的匹配过程是由 I2C 核心来完成的,drivers/i2c/i2c-core.c 就是 I2C 的核心 部分,I2C 核心提供了一些与具体硬件无关的 API 函数,比如前面讲过的:

i2c_adapter 注册/注销函数
int i2c_add_adapter(struct i2c_adapter *adapter)
int i2c_add_numbered_adapter(struct i2c_adapter *adap)
void i2c_del_adapter(struct i2c_adapter * adap)i2c_driver 注册/注销函数
int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
int i2c_add_driver (struct i2c_driver *driver)
void i2c_del_driver(struct i2c_driver *driver)

设备和驱动的匹配过程也是由 I2C 总线完成的,I2C 总线的数据结构为 i2c_bus_type,定义 在 drivers/i2c/i2c-core.c 文件,i2c_bus_type 内容如下:

struct bus_type i2c_bus_type = {.name = "i2c",.match = i2c_device_match,.probe = i2c_device_probe,.remove = i2c_device_remove,.shutdown = i2c_device_shutdown,};

.match 就是 I2C 总线的设备和驱动匹配函数,在这里就是 i2c_device_match 这个函数,此函数内容如下:

static int i2c_device_match(struct device *dev, struct device_driver *drv){struct i2c_client *client = i2c_verify_client(dev);struct i2c_driver *driver;
if (!client)return 0;/* Attempt an OF style match */
if (of_driver_match_device(dev, drv))return 1;/* Then ACPI style match */if (acpi_driver_match_device(dev, drv))return 1;driver = to_i2c_driver(drv);/* match on an id table if there is one */if (driver->id_table)return i2c_match_id(driver->id_table, client) != NULL;return 0;}

of_driver_match_device(dev, drv)of_driver_match_device 函数用于完成设备树设备和驱动匹配。比较 I2C 设备节 点的 compatible 属性和 of_device_id 中的 compatible 属性是否相等,如果相当的话就表示 I2C 设备和驱动匹配。

acpi_driver_match_device(dev, drv)acpi_driver_match_device 函数用于 ACPI 形式的匹配。

i2c_match_id(driver->id_table, client)i2c_match_id 函数用于传统的、无设备树的 I2C 设备和驱动匹配过程。比较 I2C 设备名字和 i2c_device_id 的 name 字段是否相等,相等的话就说明 I2C 设备和驱动匹配。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/460749.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【汇编语言】第一个程序(四)—— 谁在幕后启动程序 : 探讨可执行文件的装载与执行

文章目录 前言1. 可执行文件的加载与运行1.1 DOS中的程序加载过程1.2 问题1:谁加载了1.exe?1.3 问题2:程序运行结束后的返回过程1.4 操作系统的外壳1.5 回答问题1和问题21.6 汇编程序执行的完整历程 2. 使用Debug加载与跟踪1.exe2.1 Debug的加…

Unreal Engine 5 C++(C#)开发:使用蓝图库实现插件(一)认识和了解Build.cs

目录 引言 一、创建一个C插件TextureReader插件 二、Build.cs文件 三、ModuleRules 四、TextureReader插件的构造 4.1ReadOnlyTargetRules的作用 4.2TextureReaderd的构造调用 4.3设置当前类的预编译头文件的使用模式 4.4PublicIncludePaths.AddRange与PrivateInclude…

SELS-SSL/TLS

一、了解公钥加密(非对称加密) 非对称加密中,用于加密数据的密钥与用于解密数据的密钥不同。私钥仅所有者知晓,而公钥则可自由分发。发送方使用接收方的公钥对数据进行加密,数据仅能使用相应的私钥进行解密。 你可以将…

STM32FreeRTOS 使用QSPI驱动nandFlash

STM32FreeRTOS 使用QSPI驱动nandFlash 不清楚为什么STM32同时打开3个以上的音频文件时会出现播放问题,所以更换方案。因为SRAM的内存空间过小,用于存储音频文件不适合,所以使用大小为128MByte的nandFlash。 nandFlash使用华邦的W25N01GVZEI…

vscode的一些使用心得

问题1:/home目录空间有限 连接wsl或者remote的时候,会在另一端下载一个.vscode-server,vscode的插件都会安装进去,导致空间增加很多,可以选择更换这个文件的位置 参考:https://blog.csdn.net/weixin_4389…

1Panel应用商店开源软件累计下载突破200万次!

2024年10月23日,1Panel应用商店内开源软件累计下载突破200万次。 1Panel(github.com/1Panel-dev/1Panel)是一款现代化、开源的Linux服务器运维管理面板,它致力于通过开源的方式,帮助用户简化建站与运维管理流程。 为…

基于MATLAB多参数结合火焰识别系统

一、课题介绍 本设计为基于MATLAB的火焰烟雾火灾检测系统。传统的采用颜色的方法,误识别大,局限性强。结合火焰是实时动态跳跃的,采用面积增长率,角点和圆形度三个维度相结合的方式判断是否有火焰。该设计测试对象为视频&#xf…

利用摄像机实时接入分析平台LiteAIServer视频智能分析软件进行视频监控:过亮过暗检测算法详解

视频监控作为一种重要的安全和管理工具,广泛应用于各个领域,如安全监控、交通监管、员工监管、公共场所监控等。然而,在实际应用中,视频监控系统经常面临各种挑战,其中之一便是视频画面过亮或过暗的问题。过亮过暗检测…

python画图|坐标轴比例设置方法

【1】引言 在前序学习进程中,我们通过ax.set_box_aspect()函数掌握了坐标轴等比例设置方法。 担当我在回顾以前的学习文章时,发现ax.axis()函数也可以设置坐标轴比例,比如下述文章,文章可通过点击链接直达: python画…

[前端][基础]JavaScript

1,JavaScript简介 JavaScript 是一门跨平台、面向对象的脚本语言,而Java语言也是跨平台的、面向对象的语言,只不过Java是编译语言,是需要编译成字节码文件才能运行的;JavaScript是脚本语言,不需要编译&…

用于文档理解的局部特征

本文介绍了一种名为DocFormerv2的多模态Transformer模型,它专为视觉文档理解(VDU)而设计。该模型可以处理视觉、语言和空间特征,利用编码器-解码器架构,并通过不对称地使用新颖的无监督任务进行预训练,以促…

Chromium127编译指南 Linux篇 - 额外环境配置(五)

引言 在成功获取 Chromium 源代码后,接下来我们需要配置适当的编译环境,以便顺利完成开发工作。本文将详细介绍如何设置 Python 和相关的开发工具,以确保编译过程无碍进行。这些配置步骤是开发 Chromium 的必要准备,确保环境设置…

HTTP相关返回值异常原因分析,第二部分

今天我们讲讲HTTP相关返回值异常如何解决(实例持续更新中) 一、4xx状态码 这些状态码表示请求有问题,通常是由于客户端的错误引起的。 1.1 400 Bad Request: 请求格式不正确,服务器无法理解。 状态码400的含义: …

.NET内网实战:通过白名单文件反序列化漏洞绕过UAC

01阅读须知 此文所节选自小报童《.NET 内网实战攻防》专栏,主要内容有.NET在各个内网渗透阶段与Windows系统交互的方式和技巧,对内网和后渗透感兴趣的朋友们可以订阅该电子报刊,解锁更多的报刊内容。 02基本介绍 03原理分析 在渗透测试和红…

Spring Boot 实现文件分片上传和下载

文章目录 一、原理分析1.1 文件分片1.2 断点续传和断点下载1.2 文件分片下载的 HTTP 参数 二、文件上传功能实现2.1 客户端(前端)2.2 服务端 三、文件下载功能实现3.1 客户端(前端)3.2 服务端 四、功能测试4.1 文件上传功能测试4.2 文件下载功能实现 参考资料 完整案例代码&…

【数据结构】-数组

数组 特点: 数组的地址连续,可以通过下标获取数据。 1. 数组扩容 步骤: $1. 创建一个比原来数组更长的新数组 $2. 让原来数组当中的数据依次复制到新数组当中 $3. 让arr指向新数组,原数组空间释放 2. 数组插入 2.1 最后位置…

智慧小区:科技之光点亮幸福家园

智慧社区的未来发展方向与趋势 从智能化管理到便捷化服务,从环保节能到安全监控,智慧社区正以其前瞻性的视野和创新性的技术,引领着未来城市生活的新方向。从智慧社区的基本概念中通过运用现代科技手段,如物联网、云计算、大数据…

0,国产FPGA(紫光同创)-新建PDS工程

国产FPGA正在蓬勃发展,紫光同创FPGA是大家竞赛时经常遇到的一款国产FPGA,本专栏从IP核开始一直到后续图像处理等。 开发板:盘古50K标准板 1,新建PDS工程 点击File(1),然后是New Projects&#…

深入解析Sysmon日志:增强网络安全与威胁应对的关键一环

不断演进的网络安全领域中,保持对威胁的及时了解至关重要。Sysmon日志在这方面发挥了至关重要的作用,通过提供有价值的见解,使组织能够加强其安全姿态。Windows在企业环境中是主导的操作系统,因此深入了解Windows事件日志、它们的…