【STL_list 模拟】——打造属于自己的高效链表容器

一、list节点

​ list是一个双向循环带头的链表,所以链表节点结构如下:

	template<class T>struct ListNode{T val;ListNode* next;ListNode* prve;ListNode(int x){val = x;next = prve = this;}};

二、list迭代器

2.1、list迭代器与vector迭代器区别

​ list迭代器与vector迭代器不一样,不能使用简单的原生指针了;

vector中迭代器可以使用原生指针,因为vector的存储空间是连续的,可以通过指针+/-/++/–找到下一个(上一个)位置;而list(链表)我们知道存储空间是不连续的,不能通过指针++/—找到下一个(上一个)节点;那我们就不能使用原生指针。

2.2、list迭代器实现

​ 既然原生指针不能满足我们的需求,那我们就要用其他的方法来实现迭代器,这时候类的封装的意义就体现出来了;我们只需要对原生指针进行封装,然后使用运算符重载来修改迭代器++/–这些行为,这样就可以满足我们的需求了。

具体代码如下:

	template<class T, class Ref, class Str>class list_iterator{typedef ListNode Node;typedef list_iterator iterator;public:list_iterator(Node* node){_node = node;}//前置++iterator operator++(){Node tmp(_node);_node = _node->_next;return tmp;}//后置++iterator operator++(int){_node = _node->_next;return *this;}//前置--iterator operator--(){Node tmp(_node);_node = _node->_prve;return tmp;}iterator operator++(int){_node = _node->_prve;return *this;}bool operator==(const iterator& it){return _node == it._node;}bool operator!=(const iterator& it){return _node != it._node;}Ref operator*(){return _node->val;}Ptr operator->(){return &(_node->_val);}private:Node* _node;};

三、list实现

3.1、构造函数

在这里插入图片描述

先看一下list构造函数的接口

构造函数接口说明
list()默认构造函数,构造一个空的list
list (size_type n, const value_type& val =value_type())用n个val值构造list
list (InputIterator first, InputIterator last)还有一段迭代器区间初始化
list (const list& x)拷贝构造函数

​ 这里我们实现的list是带头双向循环链表,具体结构与之前的双向链表相同。

在构造之前,我们需要先构造一个头结点,这里就写一个函数 empty_init 来构造这个头结点。

		empty_init(){_head = new Node();_head->_next = _head;_head->_prve = _head;}

默认构造函数

list()
{empty_init();_size = 0;
}

用n个val值构造

list(size_t n, const T& val)
{/*_head = new Node();_head->_next = _head;_head->_prve = _head;*/empty_init();for (size_t i = 0; i < n; i++){Node* newnode = new Node(val);newnode->_next = _head->_next;newnode->_prve = _head->_next;_head->_next->_prve = newnode;_head->_next = newnode;}_size = n;
}

迭代器区间构造

​ 使用迭代器区间构造,这里复用一下后面的push_back直接尾插来构造。

template<class InputIterator>
list(InputIterator first, InputIterator last)
{empty_init();_size = 0;while (first != last){push_back(*first);_size++;}
}
void push_back(const T& val)
{Node* newnode = new Node(val);newnode->_next = _head;newnode->_prve = _head->_prve;_head->_prve->_next = newnode;_head->_prve = newnode;
}

拷贝构造函数

​ 拷贝构造,这里直接复用上面迭代器构造即可。

		list(const list& l){empty_init();list(l.begin(), l.end());_size = l.size();}

3.2、迭代器

		//iteratoriterator end(){//return _head->_next;return iterator(_head);}iterator begin(){//return _head;return iterator(_head->_next);}const_iterator end() const{//return _head->_next;return const_iterator(_head);}const_iterator begin() const{//return _head;return const_iterator(_head->_next);}

​ 这里迭代器返回值,可以直接返回节点指针(因为单参数的构造函数支持隐式类型转换)。

3.3、Capacity

在这里插入图片描述
​ 主要就是empty和size(判断空和数据个数)

		//Capacitybool empty(){return _head == _head->_next;}size_t size(){/*size_t ret = 0;Node* ptail = _head->_next;while (ptail != head){ret++;ptail = ptail->_next;}return ret;*/return _size;}

​ 这里遍历链表来计算数据个数,代价太大了,我们直接写一个成员变量,在初始化,插入和删除时修改,会方便很多。

3.4、增删查改

在这里插入图片描述

​ 这里增删查改就实现其中的一部分,其他的不太常用。

3.4.1、push_back、push_front、pop_back、pop_front

​ 头插尾插,头删尾删,对于list而言,只需要修改指针的指向;

void push_back(const T& val)
{Node* newnode = new Node(val);newnode->_next = _head;newnode->_prve = _head->_prve;_head->_prve->_next = newnode;_head->_prve = newnode;_size++;
}
void push_front(const T& val)
{Node* newnode = new Node(val);newnode->_next = _head->_next;newnode->_prve = _head;_head->_next->_prve = newnode;_head->_next = newnode;_size++;
}//删
void pop_back()
{if (!empty()){Node* del = _head->_prve;_head->_prve->_prve->_next = _head;_head->_prve = _head->_prve->_prve;delete del;_size--;}
}
void pop_front()
{if (!empty()){Node* del = _head->_next;_head->_next->_next->_prve = _head;_head->_next = _head->_next->_next;delete del;_size--;}
}

3.4.2、insert

在这里插入图片描述

​ insert在指定位置插入数据,看它的参数列表,大概就知道,要在迭代器position 迭代器位置(之前)插入数据(1个或者n个),或者插入一段迭代器区间的数据。

//insert
void insert(iterator pos, const T& val)
{Node* newnode = new Node(val);Node* tmp = pos._node;newnode->_next = tmp;newnode->_prve = tmp->_prve;tmp->_prve->_next = newnode;tmp->_prve = newnode;++_size;
}
void insert(iterator pos, size_t n, const T& val)
{for(size_t i = 0; i < n; i++){Node* newnode = new Node(val);Node* tmp = pos._node;newnode->_next = tmp;newnode->_prve = tmp->_prve;tmp->_prve->_next = newnode;tmp->_prve = newnode;}_size+=n;
}
void insert(iterator pos, int n, const T& val)
{for(size_t i = 0; i < n; i++){Node* newnode = new Node(val);Node* tmp = pos._node;newnode->_next = tmp;newnode->_prve = tmp->_prve;tmp->_prve->_next = newnode;tmp->_prve = newnode;}
}

这里需要注意:

​ 看到这里可能会疑惑,为什么实现了两个插入n个数据 的insert函数;

因为,当数据类型是int时,下面模版实例化出的函数(iterator , int , int)比这里实现的(iterator , size_t , int)更加匹配;编译器就会去调用更加匹配的函数,就会出错。这里就是为了防止这种出错。

​ 插入迭代器的数据,与使用迭代器区间构造初始化相似,list只需改变指针指向即可。

		template<class InputIterator>void insert(iterator pos, InputIterator first, InputIterator last){while (first != last){Node* newnode = new Node(*first);Node* tmp = pos._node;newnode->_next = tmp;newnode->_prve = tmp->_prve;tmp->_prve->_next = newnode;tmp->_prve = newnode;++first;}}

3.4.3、erase

​ erase删除一个节点,我们要修改前后节点的指针指向。

iterator erase(iterator pos)
{assert(pos != end());Node* del = pos._node;Node* next = del->_next;Node* prve = del->_prve;next->_prve = prve;prve->_next = next;delete del;return next;
}

​ 在我们删除节点之后,之前的迭代器就会失效,为了解决迭代器失效问题,我们就使用返回值,返回新的迭代器。

3.4.4、swap

​ 这里实现的list只有一个成员函数(头结点的指针),直接交换即可。

		void swap(list& l){std::swap(_head, l._head);}

3.4.5、clear

​ clear函数,清理数据,(保留头结点)。

		//清除数据void clear(){iterator it = begin();while (it != end()){it = erase(it);}}

3.5、析构函数

​ 析构函数相对就比较简单了,我们清理完数据,再释放头结点即可。

		~list(){clear();delete _head;}

到这里,list的模拟实现就完成了;这里只是实现了其中的一部分内容,感兴趣的可以继续深入了解学习。

我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=2oul0hvapjsws
ear函数,清理数据,(保留头结点)。

		//清除数据void clear(){iterator it = begin();while (it != end()){it = erase(it);}}

3.5、析构函数

​ 析构函数相对就比较简单了,我们清理完数据,再释放头结点即可。

		~list(){clear();delete _head;}

到这里,list的模拟实现就完成了;这里只是实现了其中的一部分内容,感兴趣的可以继续深入了解学习。

我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=2oul0hvapjsws

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/462770.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VLAN间通信以及ospf配置

目录 1.基础知识介绍 1.1 什么是VLAN&#xff1f; 1.2 VLAN有什么用&#xff1f; 1.3 不同VLAN如何实现通信&#xff1f; 1.4 什么是路由汇总&#xff1f; 1.4.1 路由汇总的好处&#xff1a; 2. 实验 2.1 网络拓扑设计 2.2 实验配置要求 2.2.1 三层交换配置&#xff…

UE4_Niagara基础实例—13、通过纹理采样来创造粒子

效果&#xff1a; 知识点&#xff1a; 1、纹理采样目前仅支持GPU粒子运行&#xff08;Texture sampling is only supported on the GPU at the moment.&#xff09; 2、网格位置输出每个粒子在网格中的归一化位置。我们使用该值来采样纹理&#xff0c;就像它是UV一样&#xff…

前段(vue)

目录 跨域是什么&#xff1f; SprinBoot跨域的三种解决方法 JavaScript 有 8 种数据类型&#xff0c; 金额的用什么类型。 前段 区别 JQuery使用$.ajax()实现异步请求 Vue 父子组件间的三种通信方式 Vue2 和 Vue3 存在多方面的区别。 跨域是什么&#xff1f; 跨域是指…

基于SpringBoot+Vue实现智能停车收费系统

作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验&#xff0c;被多个学校常年聘为校外企业导师&#xff0c;指导学生毕业设计并参与学生毕业答辩指导&#xff0c;…

私有化视频平台EasyCVR海康大华宇视视频平台视频诊断技术是如何实时监测视频质量的?

在现代视频监控系统中&#xff0c;确保视频流的质量和稳定性至关重要。随着技术的进步&#xff0c;视频诊断技术已经成为实时监测视频质量的关键工具。这种技术通过智能分析算法对视频流进行实时评估和处理&#xff0c;能够自动识别视频中的各种质量问题&#xff0c;并给出相应…

Linux云计算 |【第五阶段】CLOUD-DAY10

主要内容&#xff1a; 部署Dashboard、部署Prometheus、部署HPA集群 一、Dashboard介绍 Dashboard是基于网页的Kubernetes用户界面&#xff0c;可以使用Dashboard将容器应用部署到Kubernetes集群中&#xff0c;也可以对容器应用排错&#xff0c;还能管理集群资源。可以使用Da…

无人机避障——4D毫米波雷达Octomap从点云建立三维栅格地图

Octomap安装 sudo apt-get install ros-melodic-octomap-ros sudo apt-get install ros-melodic-octomap-msgs sudo apt-get install ros-melodic-octomap-server sudo apt-get install ros-melodic-octomap-rviz-plugins # map_server安装 sudo apt-get install ros-melodic-…

【GIN】go-gin 中 validator 验证功能

文章目录 前言一、基础用法二、常用字段说明常用字段说明1. required2. len3. min 和 max4. gte 和 lte 、 gt 和 lt 、ne5. oneof6. email7. url 三、示例代码运行效果 总结 前言 在 Go 中使用 Gin 框架时&#xff0c;BindJSON 可以将 JSON 请求体中的数据绑定到结构体上&…

使用Jupyter Notebook进行数据科学项目

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 使用Jupyter Notebook进行数据科学项目 Jupyter Notebook 简介 安装 Jupyter Notebook 创建和管理 Notebook 编写和运行代码 示例…

【MyBatis源码】CacheKey缓存键的原理分析

文章目录 Mybatis缓存设计缓存KEY的设计CacheKey类主体CacheKey组成CacheKey如何保证缓存key的唯一性 Mybatis缓存设计 MyBatis 每秒过滤众多数据库查询操作&#xff0c;这对 MyBatis 缓存键的设计提出了很高的要求。MyBatis缓存键要满足以下几点。 无碰撞&#xff1a;必须保证…

一键式配置适合 Web 开发的Ubuntu系统

大家好&#xff0c;今天给大家分享一个专为Ubuntu设计的Web开发者配置方案Omakub。 项目介绍 Omakub是一个为开发者打造的、经过精心配置的 Ubuntu 环境项目&#xff0c;由 Ruby on Rails 的创造者 David Heinemeier Hansson&#xff08;DHH&#xff09;发起。目的是为了简化他…

Nginx安装配置详解

Nginx Nginx官网 Tengine翻译的Nginx中文文档 轻量级的Web服务器&#xff0c;主要有反向代理、负载均衡的功能。 能够支撑5万的并发量&#xff0c;运行时内存和CPU占用低&#xff0c;配置简单&#xff0c;运行稳定。 写在前 uWSGI与Nginx的关系 1. 安装 Windows 官网 Stabl…

数据库 二

一.数据认识 1.关系型 表与表的关系&#xff1a;核心表 mysql/oracle、SQLServer(微软) SQL 2.非关系型 redis--缓存数据库Map<k,v> NO-SQL&#xff1a;not only sql 二.关系型数据库(R) 1.客户端、数据库服务 2.库(database) CREATE DATABASE xxx_db;//创建库 DR…

开源OCR免费助力法律文档数字化,提升文档管理效率

一、在法律行业&#xff0c;每天需要处理大量纸质文件&#xff0c;从合同到判决书&#xff0c;手动录入不仅费时&#xff0c;还容易出错。为解决这一问题推出了一款免费开源的OCR智能识别平台&#xff0c;通过先进的光学字符识别&#xff08;OCR&#xff09;技术&#xff0c;将…

零售EDI:HornBach EDI 项目案例

HornBach 是一家总部位于德国的家居和建筑材料零售商&#xff0c;成立于1968年。它以大型仓储式商店而闻名&#xff0c;提供广泛的产品&#xff0c;包括建筑材料、园艺、家居装饰和工具等。 近期我们帮助HornBach的供应商W公司成功实现了与HornBach的EDI直连&#xff0c;除了满…

jupyter如何切换内核

01、写在前面 Jupyter是一个开源的交互式笔记本工具&#xff0c;支持多种编程语言&#xff0c;包括Python、R、Julia 等。它最初是作为IPython 笔记本的一个分支而开发的&#xff0c;后来逐渐发展成为一个独立的项目。Jupyter的名字来源于它支持的三种编程语言&#xff1a;Juli…

STM32ZET6-USART使用

一、原理说明 STM32自带通讯接口 通讯目的 通信方式&#xff1a; 全双工&#xff1a;通信时可以双方同时通信。 半双工&#xff1a;通信时同一时间只能一个设备发送数据&#xff0c;其他设备接收。 单工&#xff1a;只能一个设备发送到另一个设备&#xff0c;例如USART只有…

动态库实现lua网络请求GET, POST, 下载文件

DLL需要使用的网络封装 WinHttp异步实现GET, POST, 多线程下载文件_webclient post下载文件-CSDN博客文章浏览阅读726次。基于WinHttp封装, 实现异步多线程文件下载, GET请求, POST请求_webclient post下载文件https://blog.csdn.net/Flame_Cyclone/article/details/142644088…

牛客周赛65(C++实现)

比赛链接&#xff1a;牛客竞赛_ACM/NOI/CSP/CCPC/ICPC算法编程高难度练习赛_牛客竞赛OJ 文章目录 1.超市1.1 题目描述1.2 思路1.3 代码 2. 雨幕2.1 题目描述2.2 思路2.3 代码 3.闺蜜3.1 题目描述3.2 思路3.3 代码 4. 医生4.1 题目描述4.2 思路4.3 代码 1.超市 1.1 题目描述 …

机器人技术革新:人工智能的强力驱动

内容概要 在当今世界&#xff0c;机器人技术与人工智能的结合正如星星与大海&#xff0c;彼此辉映。随着科技的不断进步&#xff0c;人工智能不仅仅是为机器人赋予了“聪明的大脑”&#xff0c;更是推动了整个行业的快速发展。回顾机器人技术的发展历程&#xff0c;我们会发现…