力扣刷题(sql)--零散知识点(2)

1.自定义分组后的分类统计问题(某组内无数据却仍要展示)

例题1:

查询每个工资类别的银行账户数量。 工资类别如下:

  • "Low Salary":所有工资 严格低于 20000 美元。
  • "Average Salary": 包含 范围内的所有工资 [$20000, $50000] 。
  • "High Salary":所有工资 严格大于 50000 美元。

结果表 必须 包含所有三个类别。 如果某个类别中没有帐户,则报告 0。

输入:
Accounts 表:
+------------+--------+
| account_id | income |
+------------+--------+
| 3          | 108939 |
| 2          | 12747  |
| 8          | 87709  |
| 6          | 91796  |
+------------+--------+
输出:
+----------------+----------------+
| category       | accounts_count |
+----------------+----------------+
| Low Salary     | 1              |
| Average Salary | 0              |
| High Salary    | 3              |
+----------------+----------------+

这里主要难点就是把这类“Average Salary”组内没有符合条件的分组不能将其省略,可以通过以下方法,用union来操作,不是很高级的方法,但很完美实现了目的,适用于分组比较少的情况,真的很实用。

select 'Low Salary' category,count(*) accounts_count from Accounts
where income<20000
union
select 'Average Salary' category,count(*) accounts_count from Accounts
where income between 20000 and 50000
union
select 'High Salary' category,count(*) accounts_count from Accounts
where income>50000

2. 用union增加不好分组的组的信息  

上面是一个例子,“Average Salary”这一组由于其没有满足的数据,所以我们用group by往往不好对其处理。那就对这组单独处理分组后union到之前正常能分组的结果中。

以下是另一个例子:

编写一个解决方案,找出在 2019-08-16 时全部产品的最新价格,假设所有产品在修改前的价格都是 10 。

示例 1:

输入:
Products 表:
+------------+-----------+-------------+
| product_id | new_price | change_date |
+------------+-----------+-------------+
| 1          | 20        | 2019-08-14  |
| 2          | 50        | 2019-08-14  |
| 1          | 30        | 2019-08-15  |
| 1          | 35        | 2019-08-16  |
| 2          | 65        | 2019-08-17  |
| 3          | 20        | 2019-08-18  |
+------------+-----------+-------------+
输出:
+------------+-------+
| product_id | price |
+------------+-------+
| 2          | 50    |
| 1          | 35    |
| 3          | 10    |
+------------+-------+

这里product_id为3的产品在‘2019-08-16’前都没出现过,不方便加入其他id组的讨论中,那就只能将其单独构建除结果内容后用union和返回的其他产品id返回的结果拼接。

本题参考代码如下,还用到了row_number构建序号列配合排序和排序倒序为1找极值。


selectproduct_id, new_price as price
from(selectproduct_id,new_price,change_date,(row_number() over (partition by product_id order by change_date DESC)) r
from products 
where date(change_date) <= '2019-08-16') a
where r='1'unionselectproduct_id, 10 as price 
fromProducts 
group byproduct_id
havingmin(change_date)>'2019-08-16';

3. 起累加作用的语句 

下面是根据turn列,来做累加的语句,又用到了over啥的,我们之前学习的row_number、lag函数已经提到过了,那这里也能不能用partition by呢,肯定也是可以的。

SUM(weight) OVER (ORDER BY turn)

举例说明:

athlete_idathlete_nameweightturn
1John701
2Mike752
3Sarah653
4Linda804
5Paul685
SELECT athlete_name,weight,SUM(weight) OVER (ORDER BY turn) AS cumulative_weight
FROM weights
ORDER BY turn;
athlete_nameweightcumulative_weight
John7070
Mike75145
Sarah65210
Linda80290
Paul68358

4. 经典例题:换座位

示例 1:

输入: 
Seat 表:
+----+---------+
| id | student |
+----+---------+
| 1  | Abbot   |
| 2  | Doris   |
| 3  | Emerson |
| 4  | Green   |
| 5  | Jeames  |
+----+---------+
输出: 
+----+---------+
| id | student |
+----+---------+
| 1  | Doris   |
| 2  | Abbot   |
| 3  | Green   |
| 4  | Emerson |
| 5  | Jeames  |
+----+---------+
解释:
请注意,如果学生人数为奇数,则不需要更换最后一名学生的座位。

这题很经典,可以单独拿出来作为一个知识点。

我第一次没做出来,下面是两种很棒的思路。

1.将偶数 id 减 2 后重排即可

select 
rank() over(order by if(id % 2 = 0,id-2,id)) as id,student 
from seat

这不是我写的代码,看起来很简洁有效,我懂了思路后,还要再进一步学习其窗口函数rank()的应用,以及窗口函数后面order by加上if配合的使用。这里应该是直接把处理好的id用于窗口函数order by的排序了,牛,我可能还要再来个中间表啥的。

2.更符合逻辑的思路(逻辑非常易懂)

SELECT (CASE WHEN MOD(id,2) = 1 AND id = (SELECT COUNT(*) FROM seat) THEN idWHEN MOD(id,2) = 1 THEN id+1ElSE id-1END) AS id, student
FROM seat
ORDER BY id;

这里用到case来处理超过两种情况的条件判断。首先,明确这题的处理对象,最好是id,因为id是简单连续数字,可以做简单加减运算。

值得注意的是,如果最后一个学生序号为奇数,那就不要换了。所以要求最多的,可能为奇数的最后一个序号优先处理,放在case的第一个判断框,让它直接等于它本身;第二个放不是最后一个序号的技术序号,让他序号加1;最后只有偶数序号了,全部减1;完美的逻辑。

5. 注意date_format()里面的参数

终于实践代码的时候用到了date_format()函数,特别有用的函数,特别是在分类的时候。有几点注意事项,是关于参数的。

SELECT DATE_FORMAT(created_at, '%Y-%m-%d') AS full_date,DATE_FORMAT(created_at, '%Y') AS four_digit_year,DATE_FORMAT(created_at, '%y') AS two_digit_year,DATE_FORMAT(created_at, '%M') AS full_month_name,DATE_FORMAT(created_at, '%m') AS two_digit_month,DATE_FORMAT(created_at, '%D') AS day_with_suffix
FROM some_table;

结果如下: 

执行上述查询后的结果如下:

full_datefour_digit_yeartwo_digit_yearfull_month_nametwo_digit_monthday_with_suffix
2024-10-01202424October101st

解释:

最常用的是%Y-%m-%d,尤其是%Y-%m,常用于具体年月的分组。

6. 单个union语句只能使用一个order by或limit

  • ORDER BYUNION 中的使用:

    • ORDER BY 应该放在整个 UNION 查询的最后,而不是每个子查询中。你可以在子查询内部使用 ORDER BY,但通常要使用子查询包装。
  • LIMIT 也需要注意:

    • UNION 中,你可以对每个子查询使用 LIMIT,但不能在 UNION 之后直接再使用单独的 ORDER BY

   举个例子,下面如果不加括号就会报错。

(selectu.name results
frommovierating m
order byu.name
limit 1)union all(selectmv.title results
frommovierating m
order bymv.title
limit 1);
  • 加括号明确了每个查询的范围,让每个查询都能独立执行自己的 ORDER BYLIMIT,然后再用 UNION 合并。
  • 不加括号时,数据库认为 ORDER BYLIMIT 试图对整个 UNION 操作生效,但 SQL 标准不允许这种用法。

 值得一提的是,这里用到了union all,有的时候用的上,它不会去掉重复的返回行(重复指每一列的数据都一样),union会。

--------------------------------------------------------------------------------------------------------------

例题 :

输入:
Customer 表:
+-------------+--------------+--------------+-------------+
| customer_id | name         | visited_on   | amount      |
+-------------+--------------+--------------+-------------+
| 1           | Jhon         | 2019-01-01   | 100         |
| 2           | Daniel       | 2019-01-02   | 110         |
| 3           | Jade         | 2019-01-03   | 120         |
| 4           | Khaled       | 2019-01-04   | 130         |
| 5           | Winston      | 2019-01-05   | 110         | 
| 6           | Elvis        | 2019-01-06   | 140         | 
| 7           | Anna         | 2019-01-07   | 150         |
| 8           | Maria        | 2019-01-08   | 80          |
| 9           | Jaze         | 2019-01-09   | 110         | 
| 1           | Jhon         | 2019-01-10   | 130         | 
| 3           | Jade         | 2019-01-10   | 150         | 
+-------------+--------------+--------------+-------------+
输出:
+--------------+--------------+----------------+
| visited_on   | amount       | average_amount |
+--------------+--------------+----------------+
| 2019-01-07   | 860          | 122.86         |
| 2019-01-08   | 840          | 120            |
| 2019-01-09   | 840          | 120            |
| 2019-01-10   | 1000         | 142.86         |
+--------------+--------------+----------------+
解释:
第一个七天消费平均值从 2019-01-01 到 2019-01-07 是restaurant-growth/restaurant-growth/ (100 + 110 + 120 + 130 + 110 + 140 + 150)/7 = 122.86
第二个七天消费平均值从 2019-01-02 到 2019-01-08 是 (110 + 120 + 130 + 110 + 140 + 150 + 80)/7 = 120
第三个七天消费平均值从 2019-01-03 到 2019-01-09 是 (120 + 130 + 110 + 140 + 150 + 80 + 110)/7 = 120
第四个七天消费平均值从 2019-01-04 到 2019-01-10 是 (130 + 110 + 140 + 150 + 80 + 110 + 130 + 150)/7 = 142.86

做了很久这道题,加上gpt的帮忙,才得到下面的答案:

selectvisited_on,total_amount amount,average_amount
from(SELECT visited_on,SUM(amount) OVER (ORDER BY visited_on RANGE BETWEEN INTERVAL 6 DAY PRECEDING AND CURRENT ROW) AS total_amount,ROUND(AVG(amount) OVER (ORDER BY visited_on RANGE BETWEEN INTERVAL 6 DAY PRECEDING AND CURRENT ROW), 2) AS average_amount
FROM (select customer_id,name,visited_on,sum(amount) amount from customer group by visited_on) c
ORDER BY visited_on) c2
where visited_on
IN(select distinct visited_on from customerwhere datediff(visited_on,(select min(visited_on) from customer)) >= 6);

先介绍一下具体逻辑(由里到外):

这里某个日期还有多个数据,先用groupby用日期分组,把相同日期的数据先加起来,让每个日期只有一个数据。

然后用sum、avg窗口函数配合range或者rows(等下会讲),计算从这行开始加上前面6行(总共七行)的总和和平均值,目前得到每一个单独日期的总和和平均值

最后找出返回的日期,从1号开始,只有7号开始后的日期才有7天的周期可言。即7号的周期为1号到7号,8号的周期为2号到8号......返回7号之后的日期。这里对应着上面代码的where visited_on in(7号,8号......),最终就返回指定日期的总和和平均值,这里是7、8、9、10号。

7. 窗口函数的rows、range应用

下面是窗口函数中rows、range的语法及运用:

SUM(amount) OVER (ORDER BY visited_on ROWS BETWEEN 6 PRECEDING AND CURRENT ROW)SUM(amount) OVER (ORDER BY visited_on RANGE BETWEEN INTERVAL 6 DAY PRECEDING AND CURRENT ROW)

其中rows那一行起到的作用是,配合sum对当前行以及当前行的前面六行总共七行进行求和,rows是基于物理行的,即只看行数;而range则类似,配合sum对当前行的日期以及当前行的日期的前六天,总共七天的内容进行求和,range是基于基于逻辑值的。这里是sum,当然也可以配合avg等其他函数使用,真的很好用。

8. interval的用法

Interval 在英文里表示:间隔、时间段,指两个时间或事件之间的距离。在 SQL 中,INTERVAL 用来表示日期和时间的时间间隔。它用于增加或减少日期时间,以便进行计算。

interval主要的两个常见用法:

1. 计算日期(用字段加减interval的时间段,来定义新的时间)

SELECT visited_on - INTERVAL 1 DAY AS previous_day
FROM customer;SELECT *
FROM orders
WHERE order_date > NOW() - INTERVAL 30 DAY;

2. 配合函数

SELECT DATE_ADD('2024-10-28', INTERVAL 1 YEAR + 2 MONTH) AS new_date;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/463516.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SICTF Round #4|MISC

1.派森 腐乳昂木 奥普瑞特儿 阴坡尔特 艾克斯奥尔 腐乳昂木 提克有第爱慕 阴坡尔特 ⭐ 弗拉格 等于 布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉布拉 印刻 等于 左中括号右中括号 佛儿 唉 因 梯软者左括号 零&#xff0c;楞左括号弗拉格右…

保研考研机试攻略:python笔记(2)

&#x1f428;&#x1f428;&#x1f428;宝子们好呀&#xff0c;今天我们继续来学习N诺提供的python笔记&#xff0c;fighting&#xff01;( •̀ ω •́ )✧ 对这个系列感兴趣的宝子欢迎关注保研考研机试攻略专栏哦 ~ 目录 &#x1f428;&#x1f428;&#x1f428;4进制转…

Hyper-V 安装 KylinOS V10【图文教程】

文章目录 下载 KylinOSHyper-V 安装 KylinOS新建虚拟机配置虚拟机启动虚拟机并配置下载 KylinOS KylinOS 没有直接提供下载地址,需要在页面上点试用,填写个人信息后,才能看到下载地址。 https://www.kylinos.cn/support/trial.html?trial=425887 试用地址:产品试用申请国…

LeetCode 0685.冗余连接 II:并查集(和I有何不同分析)——详细题解(附图)

【LetMeFly】685.冗余连接 II&#xff1a;并查集&#xff08;和I有何不同分析&#xff09;——详细题解(附图) 力扣题目链接&#xff1a;https://leetcode.cn/problems/redundant-connection-ii/ 在本问题中&#xff0c;有根树指满足以下条件的 有向 图。该树只有一个根节点&…

mysql查表相关练习

作业要求&#xff1a; 单表练习&#xff1a; 1 . 查询出部门编号为 D2019060011 的所有员工 2 . 所有财务总监的姓名、编号和部门编号。 3 . 找出奖金高于工资的员工。 4 . 找出奖金高于工资 40% 的员工。 5 找出部门编号为 D2019090011 中所有财务总监&#xff0c;和…

GHuNeRF: Generalizable Human NeRF from a Monocular Video

研究背景 研究问题&#xff1a;这篇文章要解决的问题是学习一个从单目视频中泛化的人类NeRF模型。尽管现有的泛化人类NeRF已经取得了令人印象深刻的成果&#xff0c;但它们需要多视图图像或视频&#xff0c;这在某些情况下可能不可用。此外&#xff0c;一些基于单目视频的人类…

Linux - grep的正则用法

新建u.txt&#xff0c;文本内容如图&#xff1a; 搜寻特定字符串 利用中括号[]搜寻集合字符 行首与行位字符^$ 任意一个字符.与重复字符*限定连续RE字符范围{} 总结:

项目模块十五:HttpResponse模块

一、模块设计思路 存储HTTP应答要素&#xff0c;提供简单接口 二、成员变量 int _status; // 应答状态码 unordered_map<string, string> _headers; // 报头字段 string _body; // 应答正文 bool _redirect_flag; // 是否重定向信息 stri…

从零开始的c++之旅——继承

1. 继承 1.继承概念及定义 继承是面向对象编程的三大特点之一&#xff0c;它使得我们可以在原有类特性的基础之上&#xff0c;增加方法 和属性&#xff0c;这样产生的新的类&#xff0c;称为派生类。 继承 呈现了⾯向对象程序设计的层次结构&#xff0c;以前我们接触的…

6.1、实验一:静态路由

源文件获取&#xff1a;6.1_实验一&#xff1a;静态路由.pkt: https://url02.ctfile.com/f/61945102-1420248902-c5a99e?p2707 (访问密码: 2707) 一、目的 理解路由表的概念 会使用基础命令 根据需求正确配置静态路由 二、准备实验 1.实验要求 让PC0、PC1、PC2三台电脑…

logback日志级别动态切换四种方案

生产环境中经常有需要动态修改日志级别。 现在就介绍几种方案 方案一&#xff1a;开启logback的自动扫描更新 配置如下 <?xml version"1.0" encoding"UTF-8"?> <configuration scan"true" scanPeriod"60 seconds" debug…

Qt字符编码

目前字符编码有以下几种&#xff1a; 1、UTF-8 UTF-8编码是Unicode字符集的一种编码方式(CEF)&#xff0c;其特点是使用变长字节数(即变长码元序列、变宽码元序列)来编码。一般是1到4个字节&#xff0c;当然&#xff0c;也可以更长。 2、UTF-16 UTF-16是Unicode字符编码五层次…

postman 获取登录接口中的返回token并设置为环境变量的方法 postman script

postman是一个比较方便的API开发调试工具&#xff0c; 我们在访问API时一般都需要设置一个token来对服务进行认证&#xff0c; 这个token一般都是通过登录接口来获取。 这个postman脚本放到登录接口的sctipt--> post-response里面即可将登陆接口中返回的token值设置到postma…

使用Django REST framework构建RESTful API

使用Django REST framework构建RESTful API Django REST framework简介 安装Django REST framework 创建Django项目 创建Django应用 配置Django项目 创建模型 迁移数据库 创建序列化器 创建视图 配置URL 配置全局URL 配置认证和权限 测试API 使用Postman测试API 分页 过滤和排序…

消息队列面试——打破沙锅问到底

消息队列的面试连环炮 前言 你用过消息队列么&#xff1f;说说你们项目里是怎么用消息队列的&#xff1f; 我们有一个订单系统&#xff0c;订单系统会每次下一个新订单的时候&#xff0c;就会发送一条消息到ActiveMQ里面去&#xff0c;后台有一个库存系统&#xff0c;负责获取…

Rust 力扣 - 1493. 删掉一个元素以后全为 1 的最长子数组

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 本题我们能转换成求只包含一个0的子数组的最长长度 如果数组中不存在0&#xff0c;则结果为数组长度减一 我们使用一个left指针指向子数组的左边界&#xff0c;然后我们遍历子数组的右边界&#xff0c;我们记录…

在 Windows 系统上,在两台机器上测试 MySQL 集群实现实时备份的基本步骤:

在两台机器上测试 MySQL 集群实现实时备份的基本步骤&#xff1a; 一、环境准备 机器配置 确保两台机器&#xff08;假设为服务器 A 和服务器 B&#xff09;能够互相通信&#xff0c;例如它们在同一个局域网内&#xff0c;并且开放了 MySQL 通信所需的端口&#xff08;默认是 3…

常见的开源软件许可证及其应用案例

目录 引言 开源的定义 开源许可证的种类 常见的开源许可证及其应用案例 结论 引言 开源软件在过去几十年中迅速发展&#xff0c;已经成为软件开发的重要组成部分。开源不仅仅是一种技术模式&#xff0c;更是一种文化和社区精神。本文将详细介绍开源的定义、开源许可证的种…

校招回顾 | “青春不散场,梦想正起航”,极限科技(INFINI Labs)亮相湖北工业大学 2025 秋季校园招聘会

10 月 31 日&#xff0c;极限科技&#xff08;INFINI Labs&#xff09; 受邀参加 湖北工业大学 2025 届秋季校园招聘会&#xff0c;这不仅是一次与满怀激情的青年学子们的深度碰撞&#xff0c;更是一场关于青春与未来的美好邂逅。让我们一起回顾校招现场的精彩瞬间&#xff0c;…

基于python的机器学习(一)—— 基础知识(Scikit-learn安装)

目录 一、机器学习基础 1.1 机器学习概述 1.2 监督学习、无监督学习和强化学习 1.3 聚类、分类、回归、标注 1.3.1 聚类 1.3.2 分类 1.3.3 回归 1.3.4 标注 1.4 机器学习、人工智能和数据挖掘 1.5 机器学习的三个要素 二、Scikit-learn 机器学习库 2.1 Scikit-lea…