算法【Java】—— 动态规划之斐波那契数列模型

动态规划

动态规划的思路一共有五个步骤:

  1. 状态表示:由经验和题目要求得出,这个确实有点抽象,下面的题目会带大家慢慢感受状态标识
  2. 状态转移方程
  3. 初始化:避免越界访问 dp 表,所以在进行填表之前我们要预先填写好一些数据。
  4. 填表顺序
  5. 返回值

动态规划的代码书写步骤:
建表,初始化,填表,返回值,最后中间可能由细节的处理

实战演练

第N个泰波那契数

在这里插入图片描述


解析:对于一维的数据我们的状态表示基本是题目要求什么状态表示就是什么,上面这个题目要求我们求出第N 个泰波那契数,那么我们的 dp 表就定义为 dp[i] 表示 第 i 个 泰波那契数。

状态转移方程:题目已经很贴心告诉我们 T(n + 3) = T(n) + T(n+1) + T(n+2),我们稍微转化一下:T(n) = T(n-3) + T(n-2) + T(n-1),即 dp[i] = dp[i-1] + dp[i-2] + dp[i-3]

初始化:我们在求 dp[0]、dp[1]、dp[2] 的时候是不能直接使用状态转移方程来求取的,否则就会发生数组越界,所以我们要在填表之前把着三个 dp 值给预设好,dp[0] = 0, dp[1] = dp[2] = 1

填表顺序:由于在初始化我们已经填好了前面三个数字:dp[0]、dp[1]、dp[2],所以我们从 i == 3 开始填表,从左向右这个顺序把 dp 表填满。

返回值:题目要求我们求 第N 个泰波那契数,正好我们的 dp 表的状态表示也是这个,所以直接返回 dp[n] .

细节处理:如果 n = 0 / 1 的时候,直接返回,不需要初始化和填表了,避免数组访问越界,举个例子:假设 n 等于 0,也就是说 dp 表其实就只有一个位置,但是你初始化要初始三个位置,数组妥妥越界访问。

class Solution {public int tribonacci(int n) {//建表int[] dp = new int[n + 1];//细节处理if(n == 0 || n == 1) return n;//初始化dp[0] = 0; dp[1] = 1; dp[2] = 1;//填表for(int i = 3; i <= n; i++) {dp[i] = dp[i-1] + dp[i-2] + dp[i-3];}//返回值return dp[n];}
}

三步问题

在这里插入图片描述


解析:
状态表示:一维数组形式,我们通常以题目要求出来思考状态表示,如果这个状态表示不能推导出状态转移方程那就再换别的状态表示,这里我们直接定义状态表示为 dp[i] 表示上到第 i 个台阶一共有多少中方式。

状态转移方程:上到 第 i 个台阶有多少种方式 等于上到第 i - 1 个台阶需要多少种方式 + 上到第 i - 2 个台阶需要多少种方式 + 上到第 i - 3 个台阶需要多少种方式,为什么是三种台阶方式相加,回到题目,一次可以跨一步 / 两步 / 三步。

初始化,我们需要将 dp[1] = 1, dp[2] = 2,dp[3] = 4,设置好,同样这里也有细节要处理,如果 n == 1 或者 n == 2 直接返回即可。

填表顺序:从 i == 4 开始填,从左到右

返回值:直接返回 dp[n]

这道题还有一个小细节,就是结果可能很大,我们需要将结果 取模 1000000007,在每次进行加法的时候都去取模即可。

class Solution {public int waysToStep(int n) {//建表int[] dp = new int [n+1];//细节处理if(n == 1 || n == 2) return n;//初始化dp[1] = 1; dp[2] = 2; dp[3] = 4;//填表for(int i = 4; i <= n; i++) {dp[i] = ((dp[i-1] + dp[i-2]) % 1000000007 + dp[i-3]) % 1000000007;}//返回值return dp[n]; }
}

使用最小花费爬楼梯

在这里插入图片描述


解析:
状态表示:这里还是一个一维形式的数组,我们定义 dp[i] 表示达到 第 i 个台阶所需要的最小花费。

状态转移方程:由于每次可以走一个或者两个台阶,所以我们要推导出 dp[i] ,就要知道 dp[i-1] + cost[i-1] 和 dp[i-2] + cost[i-2] 的最小花费是什么。这个为什么要加上 cost[i-1] / cost[i-2] ? 因为 dp[i] 表示达到 i 台阶需要的最小花费,你如果从 i 台阶往上走就需要先支付 i 台阶的费用也就是 cost[i]。

初始化:dp[1] = 0,dp[2] = 0,由于Java创建数组的时候默认值就是 0,所以可以不进行初始化了,但是细节还是要处理的,如果 n == 0 || n == 1 直接返回 n。

填表顺序:从 i == 2 开始从左往右填

返回值:dp[n]

class Solution {public int minCostClimbingStairs(int[] cost) {//建表int n = cost.length;int[] dp = new int[n+1];//细节处理if(n == 0 || n == 1) return n;//填表for(int i = 2; i <= n; i++) {dp[i] = Math.min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);}return dp[n];}
}

解码方式

在这里插入图片描述
在这里插入图片描述


解析:
状态表示:到达第 i 个字符的时候一共有多少种编码。

状态转移方程:首先我们先进行单字符解码,如果一个字符的数值不等于 0 的时候,是可以单独解码的,这时候 dp[i] += dp[i-1],把前一个字符有多少种解码方式加起来。
然后就是和前一个字符看是否能共同解码,首先要求前一个字符不能为 0, 其次两个字符组成的数字要小于等于 26,如果都满足,说明可以和前一个字符进行合并解码,dp[i] += dp[i-2],把前前一个字符的解码方式相加起来。

初始化:先处理前两个字符的 dp 值,并且有一个细节,如果 字符串长度为 1, 是不能进行第二个字符的解码的,需要直接返回。

填表顺序:从 i == 2 开始从左往右填写。

返回值:dp[n-1]

还有一个细节:如果一个dp 值为 0 的时候,不需要进行后面的填表操作,此时已经无法对字符串进行解码了,直接返回 0 即可。

class Solution {public int numDecodings(String ss) {//建表int n = ss.length();int[] dp = new int [n];char[] s = ss.toCharArray();//细节处理与初始化if(s[0] - '0' != 0) {dp[0] = 1;} else {dp[0] = 0;}if(n == 1 || dp[0] == 0) {return dp[0];}//处理第二个字符if(s[1] - '0' != 0) dp[1]++;if(s[0] - '0' != 0 && (s[0] - '0') * 10 + (s[1] - '0') <= 26) dp[1]++;//填表for(int i = 2; i < n; i++) {if(s[i] - '0' != 0) dp[i] += dp[i-1];if(s[i-1] - '0' != 0 && 10 * (s[i-1] - '0') + (s[i] - '0') <= 26) dp[i] += dp[i-2];if(dp[i] == 0) return 0;}return dp[n-1];}
}

小结

面对一维形式的数据的时候,一般我们的状态表示直接从题目要求中获取。
在初始化之前一定要注意没有细节需要处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/464036.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习】软件测试中的过程管理为何如此重要

在软件世界的繁华盛景之中&#xff0c;无数代码编织成了璀璨的星空&#xff0c;而每一颗闪烁的星点背后&#xff0c;都离不开精心的过程管理来确保其光华不减。正如一座摩天大楼需要稳固的地基与精细的设计图一样&#xff0c;软件的成功问世同样依赖于严谨、系统的流程管控。本…

深入学习 Scrapy 框架:从入门到精通的全面指南

深入学习 Scrapy 框架&#xff1a;从入门到精通的全面指南 引言 在数据驱动的时代&#xff0c;网络爬虫成为了获取信息的重要工具。Scrapy 是一个强大的 Python 爬虫框架&#xff0c;专为快速高效地提取网页数据而设计。本文将深入探讨 Scrapy 的使用&#xff0c;从基础知识到…

【Python】【数据可视化】【商务智能方法与应用】课程 作业一 飞桨AI Studio

作业说明 程序运行和题目图形相同可得90分&#xff0c;图形显示有所变化&#xff0c;美观清晰可适当加分。 import matplotlib.pyplot as plt import numpy as npx np.linspace(0, 1, 100) y1 x**2 y2 x**4plt.figure(figsize(8, 6))# yx^2 plt.plot(x, y1, -., labelyx^2,…

Postgresql源码(137)执行器参数传递与使用

参考 《Postgresql源码&#xff08;127&#xff09;投影ExecProject的表达式执行分析》 0 总结速查 prepare p_04(int,int) as select b from tbl_01 where a $1 and b $2为例。 custom计划中&#xff0c;在表达式计算中使用参数的值&#xff0c;因为custom计划会带参数值&…

自适应对话式团队构建,提升语言模型代理的复杂任务解决能力

人工智能咨询培训老师叶梓 转载标明出处 如何有效利用多个大模型&#xff08;LLM&#xff09;代理解决复杂任务一直是一个研究热点。由美国南加州大学、宾夕法尼亚州立大学、华盛顿大学、早稻田大学和谷歌DeepMind的研究人员联合提出了一种新的解决方案——自适应团队构建&…

GitHub上传自己的项目

目录 一、安装Git插件 1&#xff09;下载 2&#xff09;安装 二、创建Gothub的创库 三、通过Git上传本地文件到Github 四、其他 1、部分指令 2、如果已经运行过git init并设置了[user]&#xff0c;下次可以直接用 一、安装Git插件 1&#xff09;下载 下载地址&#x…

SpringBoot整合EasyExcel加Vue

EasyExcel好处是什么? EasyExcel 是一个基于 Apache POI 的 Java Excel 处理库&#xff0c;主要用于高效地读写 Excel 文件。它的主要好处包括&#xff1a; 高性能&#xff1a;EasyExcel 在内存管理和读取速度上进行了优化&#xff0c;适合处理大规模 Excel 文件。 简洁易用…

VisionPro —— CogPatInspectTool对比工具

一、CogPathInspectTool工具简介 CogPathInspectTool是VisionPro重要的工具&#xff0c;主要用于缺陷检测&#xff0c;通过将当前图像与“训练图像”对比&#xff0c;获取“原始差异图像”&#xff0c;再将“原始差异图像”与“阈值图像”进行对比&#xff0c;进而获取“阈值差…

css实现antd丝带效果

先上效果图&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document…

BFV/BGV全同态加密方案浅析

本文主要为翻译内容&#xff0c;原文地址&#xff1a;Introduction to the BFV encryption scheme、https://www.inferati.com/blog/fhe-schemes-bgv 之前的一篇博客我们翻译了CKKS全同态加密方案的内容&#xff0c;但该篇上下文中有一些知识要点&#xff0c;作者在BFV/BGV中已…

占地1.1万平,2亿投资的智能仓储系统:高架库、AGV、码垛机器人……

导语 大家好&#xff0c;我是社长&#xff0c;老K。专注分享智能制造和智能仓储物流等内容。 我国调味料市场近年来展现出惊人的增长潜力&#xff0c;各大品牌纷纷加大投入&#xff0c;力求在竞争中脱颖而出。 广东美味鲜调味食品有限公司&#xff0c;作为行业内的佼佼者&#…

EJEAS S2滑雪对讲机全球发布会圆满举办,为滑雪市场注入新活力

时光向新&#xff0c;步履向前。站在冰雪运动与科技创新的交汇点&#xff0c;深圳爱骑仕智能科技有限公司&#xff08;以下简称“EJEAS”&#xff09;于2024年11月2日在新疆阿勒泰可可托海成功举办S2滑雪对讲机全球发布会。现场汇聚了来自全国各地的两三百名嘉宾&#xff0c;包…

个人对Numpy中transpose()函数的理解

NumPy中的transpose()函数用于对数组进行转置&#xff1a; 如果函数中不传递任何参数&#xff0c;它将进行标准的矩阵转置&#xff1b; 如果传递了一个轴序列&#xff0c;NumPy将按照这个序列重新排列轴。 二维的转置很好理解&#xff0c;就是线性代数中的矩阵转置。但高纬度…

【运动的&足球】足球运动员球守门员裁判检测系统源码&数据集全套:改进yolo11-DBBNCSPELAN

改进yolo11-FocalModulation等200全套创新点大全&#xff1a;足球运动员球守门员裁判检测系统源码&#xff06;数据集全套 1.图片效果展示 项目来源 人工智能促进会 2024.10.28 注意&#xff1a;由于项目一直在更新迭代&#xff0c;上面“1.图片效果展示”和“2.视频效果展示…

流畅!HTMLCSS打造网格方块加载动画

效果演示 这个动画的效果是五个方块在网格中上下移动&#xff0c;模拟了一个连续的加载过程。每个方块的动画都是独立的&#xff0c;但是它们的时间间隔和路径被设计为相互协调&#xff0c;以创建出流畅的动画效果。 HTML <div class"loadingspinner"><…

面试题:JVM(二)

1. 面试题 简述 Java 类加载机制?&#xff08;百度&#xff09; JVM类加载机制 &#xff08;滴滴&#xff09; JVM中类加载机制&#xff0c;类加载过程&#xff0c;什么是双亲委派模型&#xff1f; &#xff08;腾讯&#xff09; JVM的类加载机制是什么&#xff1f; &#x…

【c++日常刷题】两个数字的交集、点击消除、最小花费爬楼梯

两个数字的交集⭐ 两个数组的交集_牛客题霸_牛客网 (nowcoder.com) 题目描述&#xff1a; 解题思路&#xff1a; 通过遍历num1&#xff0c;如果遍历到的元素如果在num2中能找到&#xff0c;则这是num1和num2的公告元素&#xff1b; 这里需要借助两个数组来实现&#xff1a;…

energy 发布 v2.4.5

更新内容 修复 energy cli install 命令安装开发环境 修复 动态库加载error未暴露 增加 JS ipc.on 监听模式&#xff0c;异步返回结果 修复 energy cli 不能强制退出问题 修复 MacOS 开发模式 debug 时不更新 helper 进程 优化 energy cli 在 MacOS 开发模式和安装包制作 link…

LeetCode 19. 删除链表的倒数第 N 个结点(java)

目录 题目描述: 代码: 第一种: 第二种: 题目描述: 给你一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], n 2 输出&#xff1a;[1,2,3,5]示例 2&#xff1a; 输入&#xff1a;h…

IMU应用于监测进食

最近&#xff0c;日本研究团队成功研发了一种创新的进食速度监测系统&#xff0c;巧妙融合IMU技术&#xff0c;旨在深入研究并有效评估个体在自由生活环境下的进食习惯。 实验中&#xff0c;科研团队把IMU传感器固定在受试者佩戴的腕带中&#xff0c;以监测并记录进食手腕时的运…