基于人脸识别PCA算法matlab实现及详细步骤讲解

人脸识别

% FaceRec.m

% PCA 人脸识别修订版,识别率88%

% calc xmean,sigma and its eigen decomposition

allsamples=[];%所有训练图像

for i=1:40

for j=1:5

a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));

% imshow(a);

b=a(1:112*92); % b 是行矢量 1×N,其中N=10304,提取顺序是先列后行,即从上

到下,从左到右

b=double(b);

allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数

据代表一张图片,其中M=200

end

end

samplemean=mean(allsamples); % 平均图片,1 × N

for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean

每一行保存的数据是“每个图片数据-平均图片”

end;

% 获取特征值及特征向量

sigma=xmean*xmean'; % M * M 阶矩阵

[v d]=eig(sigma);

d1=diag(d);

% 按特征值大小以降序排列

dsort = flipud(d1);

vsort = fliplr(v);

%以下选择90%的能量

dsum = sum(dsort);

dsum_extract = 0;

p = 0;

while( dsum_extract/dsum < 0.9)

p = p + 1;

dsum_extract = sum(dsort(1:p));

end

i=1;

% (训练阶段)计算特征脸形成的坐标系

base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));

% base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)

% 详见《基于PCA 的人脸识别算法研究》p31

% xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程

%while (i<=p && dsort(i)>0)

% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)

是对人脸图像的标准化(使其方差为1)

% 详见《基于PCA 的人脸识别算法研究》p31

% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特

征向量转换的过程

%end

% 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个 M*p 阶矩阵allcoor

allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,

即在子空间中的组合系数,

accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别

% 测试过程

for i=1:40

for j=6:10 %读入40 x 5 副测试图像

a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));

b=a(1:10304);

b=double(b);

tcoor= b * base; %计算坐标,是1×p 阶矩阵

for k=1:200

mdist(k)=norm(tcoor-allcoor(k,:));

end;

%三阶近邻

[dist,index2]=sort(mdist);

class1=floor( (index2(1)-1)/5 )+1;

class2=floor((index2(2)-1)/5)+1;

class3=floor((index2(3)-1)/5)+1;

if class1~=class2 && class2~=class3

class=class1;

elseif class1==class2

class=class1;

elseif class2==class3

class=class2;

end;

if class==i

accu=accu+1;

end;

end;

end;

accuracy=accu/200 %输出识别率

特征人脸

% eigface.m

function [] = eigface()

% calc xmean,sigma and its eigen decomposition

allsamples=[];%所有训练图像

for i=1:40

for j=1:5

a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));

% imshow(a);

b=a(1:112*92); % b 是行矢量 1×N,其中N=10304,提取顺序是先列后行,即从上

到下,从左到右

b=double(b);

allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数

据代表一张图片,其中M=200

end

end

samplemean=mean(allsamples); % 平均图片,1 × N

for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean

每一行保存的数据是“每个图片数据-平均图片”

end;

% 获取特征值及特征向量

dsort = flipud(d1);

vsort = fliplr(v);

%以下选择90%的能量

dsum = sum(dsort);

dsum_extract = 0;

p = 0;

while( dsum_extract/dsum < 0.9)

p = p + 1;

dsum_extract = sum(dsort(1:p));

end

p = 199;

% (训练阶段)计算特征脸形成的坐标系

%while (i<=p && dsort(i)>0)

% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以

dsort(i)^(1/2)是对人脸图像的标准化,详见《基于PCA 的人脸识别算法研究》p31

% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩

阵特征向量转换的过程

%end

base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));

% 生成特征脸

for (k=1:p),

temp = reshape(base(:,k), 112,92);

newpath = ['d:\test\' int2str(k) '.jpg'];

imwrite(mat2gray(temp), newpath);

end

avg = reshape(samplemean, 112,92);

imwrite(mat2gray(avg), 'd:\test\average.jpg');

% 将模型保存

save('e:\ORL\model.mat', 'base', 'samplemean');

人脸重建

% Reconstruct.m

function [] = reconstruct()

load e:\ORL\model.mat;

% 计算新图片在特征子空间中的系数

img = 'D:\test2\10.jpg'

a=imread(img);

b=a(1:112*92); % b 是行矢量 1×N,其中N=10304,提取顺序是先列后行,即从上到下,

从左到右

b=double(b);

b=b-samplemean;

c = b * base; % c 是图片a 在子空间中的系数, 是1*p 行矢量

% 根据特征系数及特征脸重建图

% 前15 个

t = 15;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t1.jpg');

% 前50 个

t = 50;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t2.jpg');

% 前100 个

t = 100;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t3.jpg');

% 前150 个

t = 150;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t4.jpg');

% 前199 个

t = 199;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t5.jpg');

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/464199.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#的Event事件示例小白级剖析

1、委托Delegate 首先说一下delegate委托&#xff0c;委托是将方法作为参数进行传递。 // 定义了一个委托类型public delegate void MyDelegate(int num);// 定义了一个啥也不干的委托实例public MyDelegate m_delegate _ > {};// 定义了一个和委托相同格式的方法public …

Android 使用ninja加速编译的方法

ninja的简介 随着Android版本的更迭&#xff0c;makefile体系逐渐增多&#xff0c;导致make单编模块的时间越来越长&#xff0c;每次都需要半个小时甚至更长时间&#xff0c;其原因为每次make都会重新加载所有mk文件&#xff0c;再生成ninja编译&#xff0c;此完整过程十分耗时…

VSCode 1.82之后的vscode server离线安装

概述 因为今天在公司开发项目的时候&#xff0c;需要离线配置vscode远程开发环境&#xff0c; 根据参考链接1配置了一遍&#xff0c;不管怎么重启&#xff0c;VSCODE都还是提示下载vscode server&#xff0c;后面在官方issue上找到了解决方案 解决方案 修改Remote SSH的配置…

什么是 OpenTelemetry?

OpenTelemetry 定义 OpenTelemetry (OTel) 是一个开源可观测性框架&#xff0c;允许开发团队以单一、统一的格式生成、处理和传输遥测数据&#xff08;telemetry data&#xff09;。它由云原生计算基金会 (CNCF) 开发&#xff0c;旨在提供标准化协议和工具&#xff0c;用于收集…

缓存、注解、分页

一.缓存 作用&#xff1a;应用查询上&#xff0c;内存中的块区域。 缓存查询结果&#xff0c;减少与数据库的交互&#xff0c;从而提高运行效率。 1.SqlSession 缓存 1. 又称为一级缓存&#xff0c;mybatis自动开启。 2. 作用范围&#xff1a;同一…

AI打造超写实虚拟人物:是科技奇迹还是伦理挑战?

内容概要 在这个科技飞速发展的时代&#xff0c;超写实虚拟人物仿佛从科幻小说中走进了我们的日常生活。它们以生动的形象和细腻的动作&#xff0c;不仅在影视、广告和游戏中吸引了无数目光&#xff0c;更让我们对AI技术的未来充满了期待和疑惑。这些数字化身在逼真的外貌下&a…

CODESYS可视化星三角降压启动程序控制电气动画图

#一个用CODESYS可视化做的星三角降压启动程序控制电气动画图# 前言: 关于星三角降压启动控制,作为电气行业入门的必备知识点,涉及到电机本身特性导致的电压,电流(转矩),功率和转速等一系列的关系和变化,以及星型和三角形的绕组方式。本篇我们使用CODESYS结合程序和可视…

物联网赋能的人工智能图像检测系统

一、引言 在数字化时代&#xff0c;物联网&#xff08;IoT&#xff09;技术已经成为我们生活中不可或缺的一部分&#xff0c;极大地优化了我们的交通出行和医疗服务。物联网的核心优势在于其卓越的连接能力&#xff0c;它能够构建和连接庞大的资源数据库&#xff0c;为智能化图…

软件架构演变:从单体架构到LLM链式调用

0 前言 软件架构——我们数字世界的蓝图——自20世纪中叶计算机时代诞生以来&#xff0c;已经发生了巨大演变。 20世纪60年代和70年代早期&#xff0c;以大型主机和单体软件为主导。而今天&#xff0c;数字领域已完全不同&#xff0c;运行在由云计算、API连接、AI算法、微服务…

Claude 3.5 Sonnet模型新增了PDF支持功能

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【每日一题】LeetCode - 三数之和

给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元组。 示例 示…

基于 Canal + Elasticsearch 的业务操作日志解决方案

一、问题来源 在日常的业务系统中&#xff0c;操作日志是不可或缺的一部分。它能帮助我们追踪用户的操作行为&#xff0c;记录关键数据的变更&#xff0c;甚至在必要时支持操作回滚。最近&#xff0c;我们接到客户的需求&#xff0c;希望在系统中实现一个业务操作日志管理的功能…

Python并发编程库:Asyncio的异步编程实战

Python并发编程库&#xff1a;Asyncio的异步编程实战 在现代应用中&#xff0c;并发和高效的I/O处理是影响系统性能的关键因素之一。Python的asyncio库是专为异步编程设计的模块&#xff0c;提供了一种更加高效、易读的并发编程方式&#xff0c;适用于处理大量的I/O密集型任务…

【Vue项目1】第一篇

Vue项目1学习第一篇 01. 环境配置介绍和项目搭建02. Router路由配置引入03. ElementPlus引入和按需加载04. layout布局和菜单aside组件创建05. aside样式问题和treeMenu组件拆分06. treeMenu组件递归实现 01. 环境配置介绍和项目搭建 &#xff08;1&#xff09;安装node.js …

WPF使用Prism框架首页界面

1. 首先确保已经下载了NuGet包MaterialDesignThemes 2.我们通过包的项目URL可以跳转到Github上查看源码 3.找到首页所在的代码位置 4.将代码复制下来&#xff0c;删除掉自己不需要的东西&#xff0c;最终如下 <materialDesign:DialogHostDialogTheme"Inherit"Ide…

Golang | Leetcode Golang题解之第524题通过删除字母匹配到字典里最长单词

题目&#xff1a; 题解&#xff1a; func findLongestWord(s string, dictionary []string) (ans string) {m : len(s)f : make([][26]int, m1)for i : range f[m] {f[m][i] m}for i : m - 1; i > 0; i-- {f[i] f[i1]f[i][s[i]-a] i}outer:for _, t : range dictionary …

无人机的就业前景怎么样?

无人机的就业前景在当前及未来一段时间内都非常广阔。随着低空经济的蓬勃发展&#xff0c;无人机在农业、公安、测绘、交通、应急救援、影视拍摄等多个领域得到了广泛应用&#xff0c;对无人机操控员和相关专业人才的需求也随之急剧增加。 一、无人机操控员的就业前景 1. 高需…

如何将钉钉新收款单数据高效集成到MySQL

钉钉数据集成到MySQL的技术案例分享 在企业信息化管理中&#xff0c;数据的高效流动和处理至关重要。本文将分享一个具体的系统对接集成案例&#xff1a;如何将钉钉平台上的新收款单&#xff08;收款退款单&#xff09;数据集成到MySQL数据库中&#xff0c;方案名称为“dd-新收…

批量修改图片大小+删除空白页+手写签名

插入图片右键设置大小 设置对象格式 高度&#xff0c;宽度同一 最后一张图片拖到最后 alt键一下吸附好 ctrla全选图片 对齐 纵向分布 删除空白页 前面有文字 CTRL删除键 上一页是表格 CTRLd 勾选隐藏文字 手写签名 手机拍摄签名 发到电脑 文档里插入图…

软设师知识点-计算机网络

计算机网络 在一台安装好TCP/IP协议的计算机上&#xff0c;当网络连接不可用时&#xff0c;为了测试编写好的网络程序&#xff0c;通常使用的目的主机IP地址127.0.0.1&#xff08;本地回送地址&#xff09; *网络设备 物理层的互传设备&#xff1a;中继器(用于扩展局域网网段…