2020年美国总统大选数据分析与模型预测

数据集取自:2020年🇺🇸🇺🇸美国大选数据集 - Heywhale.com

前言

对2020年美国总统大选数据的深入分析,提供各州和县层面的投票情况及选民行为的可视化展示。数据预处理阶段将涉及对异常值的处理,以确保分析的准确性。通过数据清洗、集成、转换将为后续分析整理合理的数据集。在数据分析阶段,本次实训关注候选人在各州的得票情况及各州的政党优势,同时对县级投票支持率和选举结果进行可视化。此外,人口特征分析将帮助我们理解不同性别、年龄及地域对投票的影响。模型建立阶段将应用KNN和朴素贝叶斯算法,对大选结果预测进行建模,以其发现潜在的影响因素并为未来的选举策略提供依据。

数据预处理

数据清洗

导入csv文件,后使用 data.isnull() 检查数据框中每个元素是否为缺失值,并返回一个布尔值数据框。接着,sum() 方法计算每一列缺失值的总数,输出缺失值的统计信息。然后填充缺失值并检查。

# # 加载数据
data = pd.read_csv('president_counties.csv')# 查看前几行数据
print(data.head())# 检查缺失值
print(data.isnull().sum())
# 处理缺失值
data['state_code'] = data['state_code'].fillna('DC')
# 再次检查
print(data.isnull().sum())

数据集中fips联邦信息代码这列在分析中用不到,选择删除,并查看删除后的数据 

# 使用drop方法移除fips列
data = data.drop(columns=['fips'])# 查看移除后的数据
print(data.head())

 利用箱型图以经度为判断依据,判断并删除数据集中的异常数据,如图2-3所示。异常值处理后输出结果如图

 异常值数据在经度-160左右处,这里采取删除异常值的方式处理数据。

# 计算四分位数
Q1 = data['long'].quantile(0.25)
Q3 = data['long'].quantile(0.75)
IQR = Q3 - Q1
# 打印四分位数和IQR
print(f"Q1: {Q1}, Q3: {Q3}, IQR: {IQR}")
# 定义异常值的边界
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# 打印异常值的边界
print(f"Lower Bound: {lower_bound}, Upper Bound: {upper_bound}")
# 找出异常值
outliers = data[(data['long'] < lower_bound) | (data['long'] > upper_bound)]
print("异常值:")
print(outliers[['id', 'state', 'county', 'long']])
# 如果没有异常值,打印提示信息
if outliers.empty:print("没有找到异常值。")
# 删除异常值获取完成预处理的数据cleaned_data
cleaned_data = data[(data['long'] >= lower_bound) & (data['long'] <= upper_bound)]# 查看删除异常值后的数据
print("\n删除异常值后的数据:")
print(cleaned_data.head())

 数据集成

 检查cleaned_data中的重复行数量,然后删除这些重复行,再次检查并输出处理后的数据框中是否还有重复行。通过这种方式,可以确保数据的唯一性,便于后续的数据分析和处理。

# 检查重复数据
print("重复数据情况:")
print(cleaned_data.duplicated().sum())# 删除重复数据
cleaned_data = cleaned_data.drop_duplicates()# 再次检查重复数据
print("处理后的重复数据情况:")
print(cleaned_data.duplicated().sum())

 数据转换

针对一个数据集,进行类型转换和计算,并新增县人民投票参与率特征vote_percentage。先将数据集中 id 列的类型转换为整数型,将 total_votes 列转换为整数型,以确保其可以进行数学运算。然后将 male 和 female 列的类型转换为整数型,这分别是男性和女性的投票数。再将 population 列转换为整数型,表示总人口数,将 long 列转换为浮点型,表示地理坐标的经度。最后计算每个数据行的投票百分比,其中 vote_percentage 列为总投票数与总人口数的比值,乘以 100 以转换为百分比形式。

# 转换数据类型
data['id'] = data['id'].astype(int)
data['total_votes'] = data['total_votes'].astype(int)
data['male'] = data['male'].astype(int)
data['female'] = data['female'].astype(int)
data['median_age'] = data['median_age'].astype(float)
data['population'] = data['population'].astype(int)
data['female_percentage'] = data['female_percentage'].astype(float)
data['lat'] = data['lat'].astype(float)
data['long'] = data['long'].astype(float)# 添加或计算新的特征
data['vote_percentage'] = data['total_votes'] / data['population'] * 100

数据探索分析


数据可视化

对各州各县各候选人的得票情况进行数据可视化,使用折线图展示不同候选人在各州的投票情况。通过对数据的分组和汇总,生成清晰的图表,以便观察各候选人在不同州的表现。从图上可以看出在大多数州,乔·拜登(蓝色线条)的得票数高于唐纳德·特朗普(红色线条),尤其是在人口较多的州。特朗普在一些州的表现较好,但在整体上落后于拜登。效果图和代码如下。

# 各州各候选人的得票情况(折线图)
# 按州和候选人分组,计算每个候选人在每个州的总得票数
grouped_data = cleaned_data.groupby(['state', 'candidate'])['total_votes'].sum().unstack().fillna(0).reset_index()plt.style.use('ggplot')fig, ax = plt.subplots(figsize=(12, 8))for candidate in grouped_data.columns[1:]:ax.plot(grouped_data['state'], grouped_data[candidate], marker='o', label=candidate)ax.set_title('各州各候选人的得票情况')
ax.set_xlabel('州')
ax.set_ylabel('得票数')
plt.xticks(rotation=90)
ax.legend(title='候选人')
plt.tight_layout()
plt.show()

 分析不同州的投票数据,确定每个州的主导政党,并将结果以热力图的形式可视化,以便更直观地展示各州的投票趋势。可以看到一些州的条颜色较深,表明这些州的主要政党贡献了大量的选票。相反,有些州的条形颜色较浅,说明这些州的主要政党贡献的选票较少。效果图和代码如下.

# 州政党优势agg_data = cleaned_data.groupby(['state', 'party'])['total_votes'].sum().unstack().fillna(0).reset_index()# 确定优势政党
agg_data['dominant_party'] = agg_data[['DEM', 'REP']].idxmax(axis=1)
agg_data['dominant_votes'] = agg_data[['DEM', 'REP']].max(axis=1)# 创建热力图数据
heatmap_data = agg_data.pivot(index='state', columns='dominant_party', values='dominant_votes')# 绘制热力图
plt.figure(figsize=(10, 8))
sns.heatmap(heatmap_data, annot=True, fmt='.0f', cmap='coolwarm', cbar_kws={'label': 'Total Votes'})
plt.title('2020年美国大选中各州占主导地位的政党')
plt.xlabel('主要政党')
plt.ylabel('州')
plt.show()

 从候选人投票数据中生成一个条形图,直观展示不同候选人的县支持数,并在图中显著标识“Joe Biden”。图中Donald Trump 获得了更多的县数,柱子的高度明显高于 Joe Biden 的柱子。具体来说,Donald Trump 赢得了大约 2,500 个县,而 Joe Biden 赢得了约 400 个县。效果图和代码如下。

#  计算每个候选人赢得的县数量
candidate_wins = cleaned_data['candidate'].value_counts()#  绘制条形图
plt.figure(figsize=(10, 6))
candidate_wins.plot(kind='bar', color=['blue' if c == 'Joe Biden' else 'red' for c in candidate_wins.index])
plt.title('候选人赢得的县数')
plt.xlabel('候选人')
plt.ylabel('县支持数')
plt.xticks(rotation=0)
plt.show()

根据人口数据绘制一个条形图,使用不同颜色区分候选人名字,并设置了相应图表的标题和坐标轴标签,这样能直观地展示支持候选人的县总人口数据。从图表中可以看出,拜登的支持县总人口明显多于特朗普的支持县总人口。这意味着在选举中,拜登获得了更多来自人口密集地区的选民支持。

综合来看,虽然 特朗普 在县的数量上占据了优势,但 拜登 在人口较多的地区获得了更多的支持。这意味着 拜登 在大城市和人口稠密的地区表现更好,而 特朗普 则在较小的城市和地区有更多的支持者。

因此,可以推断出 拜登 在总统大选中获胜的可能性更大,因为他在人口众多的关键州份取得了领先。

可视化性别比例数据,通过堆叠条形图直观地展示男性和女性的人口比例。这张图表展示了两位候选人的性别比例分布情况。具体来说:对于 特朗普 来说,男性选民的比例略高于女性选民;对于 拜登 来说,则是相反的情况,即女性选民的比例更高。

 绘制一个柱状图,展示选民的中位年龄

代码: 

# 按候选人分组
grouped = cleaned_data.groupby('candidate')# 总人口
total_population = grouped['population'].sum()# 性别比例
gender_ratio = grouped[['male', 'female']].sum()
gender_ratio['female_percentage'] = gender_ratio['female'] / (gender_ratio['male'] + gender_ratio['female']) * 100# 年龄中位数
median_age = grouped['median_age'].mean()# 绘制图表# 总人口
plt.figure(figsize=(10, 6))
total_population.plot(kind='bar', color=['blue' if c == 'Joe Biden' else 'red' for c in total_population.index])
plt.title('支持县总人口')
plt.xlabel('候选人')
plt.ylabel('总人口')
plt.xticks(rotation=0)
plt.show()# 性别比例
plt.figure(figsize=(10, 6))
gender_ratio[['male', 'female']].plot(kind='bar', stacked=True, color=['blue', 'pink'])
plt.title('选民性别比例')
plt.xlabel('候选人')
plt.ylabel('总人口')
plt.xticks(rotation=0)
plt.legend(title='Gender', labels=['Male', 'Female'])
plt.show()# 年龄中位数
plt.figure(figsize=(10, 6))
median_age.plot(kind='bar', color=['blue' if c == 'Joe Biden' else 'red' for c in median_age.index])
plt.title('选民年龄中位数')
plt.xlabel('候选人')
plt.ylabel('年龄')
plt.xticks(rotation=0)
plt.show()

通过选择经纬度作为横纵轴并将大选投票支持度对应地理位置可视化。通过散点图,用户可以直观地看到选举结果的地理分布,从而为后续的数据分析或建模提供依据。这张图显示了特朗普和拜登在美国各州的支持率分布情况。特朗普在传统共和党势力较强的南部和中西部地区表现较好,而拜登在民主党传统的东北部和西海岸地区表现出色。代码和效果图如下。

 

# 大选投票地理分布
plt.figure(figsize=(10, 10))legend_labels = {'blue': False, 'red': False}for index, row in cleaned_data.iterrows():color = 'blue' if row['color'] == 'blue' else 'red'label = '拜登' if color == 'blue' else '特朗普'if not legend_labels[color]:plt.scatter(row['long'], row['lat'], c=color, alpha=0.5, label=label)legend_labels[color] = Trueelse:plt.scatter(row['long'], row['lat'], c=color, alpha=0.5)plt.title('选举结果地理分布')
plt.xlabel('经度')
plt.ylabel('纬度')plt.legend()
plt.show()

从清洗后的数据集中选择特定特征,计算这些特征之间的相关性矩阵,并通过热图进行可视化。

其具体步骤包括:定义特征列表,提取相关特征,计算相关性矩阵并打印结果,然后使用 Seaborn 库绘制热图来直观展示各个特征之间的相关性。热图通过颜色和数值标注清晰地展示了变量之间的关系,帮助用户更好地理解数据中的关联性。

从图上可以得出,总票数与男性和女性选民的数量之间存在很强的正相关性;中位年龄与总票数、男性和女性选民数量之间存在负相关性,但与人口数量和女性比例之间存在正相关性;人口数量与总票数、中位年龄和女性比例之间存在正相关性,但与男性和女性选民数量之间存在负相关性;性比例与总票数、中位年龄和人口数量之间存在正相关性,但与男性和女性选民数量之间存在负相关性。

总体投票数与人口总数高度相关:

这意味着人口较多的地区通常会有更多的投票人数。大都市区可能对选举结果有更大的影响。

建模与评估

朴素贝叶斯

首先复制了数据集并进行了清理,提取了特征,如党派、总票数、性别、年龄、人口及性别比例等,以及目标变量。然后,数据被分为训练集和测试集,模型评估的结果显示了多个指标,包括精确度、召回率、F1-score、支持度以及整体准确率。这些评估指标用于衡量模型在分类任务中的性能,表明模型在预测候选人类别时的有效性。

代码:

# 明确复制数据集
cleaned_datas = cleaned_data.copy()
# 将分类数据转换为数字编码
cleaned_datas.loc[:, 'candidate'] = cleaned_datas['candidate'].map({'Joe Biden': 0, 'Donald Trump': 1})
cleaned_datas.loc[:, 'party'] = cleaned_datas['party'].map({'DEM': 0, 'REP': 1})
# 移除不需要的列
cleaned_datas.drop(['id', 'state', 'county', 'won', 'fips', 'state_code', 'color'], axis=1, inplace=True)
cleaned_datas['candidate'] = cleaned_datas['candidate'].astype(int)
# 定义特征X和标签y
X = cleaned_datas.drop('candidate', axis=1)
y = cleaned_datas['candidate']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 朴素贝叶斯模型
nb_model = GaussianNB()
nb_model.fit(X_train, y_train)
nb_predictions = nb_model.predict(X_test)
print("朴素贝叶斯模型准确率:", accuracy_score(y_test, nb_predictions))
print(classification_report(y_test, nb_predictions))

结果展示

K近邻

使用K近邻(KNN)分类器进行超参数调优和模型评估。首先,定义了一个参数网格,其中n_neighbors的范围从1到20,用于设置KNN模型中考虑的邻居数量。接着,利用网格搜索和5折交叉验证来寻找最佳参数,并对训练数据进行拟合。获得最佳模型后,使用它对测试数据进行预测,并通过计算精确率、召回率和F1分数等指标来评估模型性能。最终,模型的整体准确率达到了86.49%,表明其分类效果良好。

代码

# K近邻模型
param_grid = {'n_neighbors': list(range(1, 21))}
knn_grid = GridSearchCV(KNeighborsClassifier(), param_grid, cv=5, scoring='accuracy')
knn_grid.fit(X_train, y_train)
best_knn_model = knn_grid.best_estimator_
print("最佳KNN模型参数:", knn_grid.best_params_)knn_predictions = best_knn_model.predict(X_test)
print("KNN模型准确率:", accuracy_score(y_test, knn_predictions))
print(classification_report(y_test, knn_predictions))

结果展示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/465760.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

工业以太网PLC无线网桥,解决用户布线难题!

工业以太网无线网桥 功能概述 本产品是工业以太网(Profinet、EtherNet/IP、ModbusTCP等)转无线设备,成对使用(一对一),出厂前已经配对好,用户不需要再配对,即插即用。适用于用户布线不方便的场景。使用方式简单,只需要把拨码开关设置好并上电即可工作,无需进行其它设置。支持P…

Android13 系统/用户证书安装相关分析总结(三) 增加安装系统证书的接口遇到的问题和坑

一、前言 接上回说到&#xff0c;修改了程序&#xff0c;增加了接口&#xff0c;却不知道有没有什么问题&#xff0c;于是心怀忐忑等了几天。果然过了几天&#xff0c;应用那边的小伙伴报过来了问题。用户证书安装没有问题&#xff0c;系统证书(新增的接口)还是出现了问题。调…

AUTOSAR CP NVRAM Manager规范导读

一、NVRAM Manager功能概述 NVRAM Manager是AUTOSAR(AUTomotive Open System ARchitecture)框架中的一个模块,负责管理非易失性随机访问存储器(NVRAM)。它提供了一组服务和API,用于在汽车环境中存储、维护和恢复NV数据。以下是NVRAM Manager的一些关键功能: 数据存储和…

kelp protocol

道阻且长,行而不辍,未来可期 有很长一段时间我都在互联网到处拾金,but,东拼西凑的,总感觉不踏实,最近在老老实实的看官方文档 & 阅读白皮书 &看合约,挑拣一些重要的部分配上官方的证据,和过路公主or王子分享一下,愿我们早日追赶上公司里那些可望不可及大佬们。…

LeetCode25:K个一组翻转链表

原题地址&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目描述 给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xff0c;那…

k8s图形化显示(KRM)

在master节点 kubectl get po -n kube-system 这个命令会列出 kube-system 命名空间中的所有 Pod 的状态和相关信息&#xff0c;比如名称、状态、重启次数等。 systemctl status kubelet #查看kubelet状态 yum install git #下载git命令 git clone https://gitee.com/duk…

Github 2024-11-07 Go开源项目日报 Top10

根据Github Trendings的统计,今日(2024-11-07统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Go项目10HTML项目1Kubernetes: 容器化应用程序管理系统 创建周期:3618 天开发语言:Go协议类型:Apache License 2.0Star数量:106913 个Fork数…

HTML 标签属性——<a>、<img>、<form>、<input>、<table> 标签属性详解

文章目录 1. `<a>`元素属性hreftargetname2. `<img>`元素属性srcaltwidth 和 height3. `<form>`元素属性actionmethodenctype4. `<input>`元素属性typevaluenamereadonly5. `<table>`元素属性cellpaddingcellspacing小结HTML元素除了可以使用全局…

制造业仓储信息化总体规划方案

文件是一份关于制造业仓储信息化的总体规划方案&#xff0c;主要内容包括项目背景、现状调研、项目目标、建设思路、业务蓝图设计方案、系统设计方案以及场景展示等。以下是对PPT内容的分析和总结&#xff1a; 1. 项目背景 目标&#xff1a;通过物流执行系统&#xff08;LES&a…

Ubuntu使用Qt虚拟键盘,支持中英文切换

前言 ​最近领导给了个需求&#xff0c;希望将web嵌入到客户端里面&#xff0c;做一个客户端外壳&#xff0c;可以控制程序的启动、停止、重启&#xff0c;并且可以调出键盘在触摸屏上使用(我们的程序虽然是BS架构&#xff0c;但程序还是运行在本地工控机上的)&#xff0c;我研…

python爬取旅游攻略(1)

参考网址&#xff1a; https://blog.csdn.net/m0_61981943/article/details/131262987 导入相关库&#xff0c;用get请求方式请求网页方式&#xff1a; import requests import parsel import csv import time import random url fhttps://travel.qunar.com/travelbook/list.…

基于单片机的农业自动灌溉系统

本设计基于单片机的农业自动灌溉系统&#xff0c;以STM32F103C8T6单片机为控制核心&#xff0c;采用电容式土壤传感器来测量土壤湿度&#xff0c;DHT11温湿度检测模块来测量环境温湿度&#xff0c;OLED屏幕来显示实时时间、Wi-Fi连接状态、环境温湿度、土壤湿度情况以及灌溉情况…

安全工程师入侵加密货币交易所获罪

一名高级安全工程师被判犯有对去中心化加密货币交易所的多次攻击罪&#xff0c;在此过程中窃取了超过 1200 万美元的加密货币。 沙克布艾哈迈德&#xff08;Shakeeb Ahmed&#xff09;被判刑&#xff0c;美国检察官达米安威廉姆斯&#xff08;Damian Williams&#xff09;称其…

Istio Gateway发布服务

1. Istio Gateway发布服务 在集群中部署一个 tomcat 应用程序。然后将部署一个 Gateway 资源和一个与 Gateway 绑定的 VirtualService&#xff0c;以便在外部 IP 地址上公开该应用程序。 1.1 部署 Gateway 资源 vim ingressgateway.yaml --- apiVersion: networking.istio.…

Linux云计算 |【第五阶段】CLOUD-DAY9

主要内容&#xff1a; Metrics资源利用率监控、存储卷管理&#xff08;临时卷ConfitMap、EmptyDir、持久卷HostPath、NFS(PV/PVC)&#xff09; 一、Metrics介绍 metrics是一个监控系统资源使用的插件&#xff0c;可以监控Node节点上的CPU、内存的使用率&#xff0c;或Pod对资…

Java 异常处理的最佳实践

在 Java 开发中&#xff0c;异常处理是一个非常重要的环节。良好的异常处理实践可以提高代码的健壮性、可读性和可维护性。本文将介绍 20 个异常处理的最佳实践&#xff0c;帮助你在实际开发中避免常见的陷阱。 1. 尽量不要捕获 RuntimeException 阿里出品的 Java 开发手册上…

系统上云-流量分析和链路分析

优质博文&#xff1a;IT-BLOG-CN 一、流量分析 【1】流量组成&#xff1a; 按协议划分&#xff0c;流量链路可分为HTTP、SOTP、QUIC三类。 HTTPSOTPQUIC场景所有HTTP请求&#xff0c;无固定场景国内外APP等海外APP端链路选择DNS/CDN(当前特指Akamai)APP端保底IP列表/动态IP下…

Linux网络编程之UDP编程

UDP编程效率高&#xff0c;不需要差错校验&#xff0c;在视频点播场景应用高 基于UDP协议客户端和服务端的编程模型&#xff0c;和TCP模型有点类似&#xff0c;有些发送接收函数不同,TCP是之间调用I/O函数read0或write()进行读写操作&#xff0c;而UDP是用sendto()和readfrom(…

【C++动态规划 01背包】2787. 将一个数字表示成幂的和的方案数|1817

本文涉及知识点 C动态规划 C背包问题 LeetCode2787. 将一个数字表示成幂的和的方案数 给你两个 正 整数 n 和 x 。 请你返回将 n 表示成一些 互不相同 正整数的 x 次幂之和的方案数。换句话说&#xff0c;你需要返回互不相同整数 [n1, n2, …, nk] 的集合数目&#xff0c;满…

服务器开放了mongodb数据库的外网端口,但是用mongodbCompass还是无法连接。

数据库的配置文件中有个bingIp也就是绑定固定的ip才能访问数据库&#xff0c;默认是127.0.0.1也就是只能本地访问&#xff0c;所以无法连接。设置为0.0.0.0则表示所有地址都能访问。 最后再确定一下防火墙的端口是否正常开放