【数据分析】如何构建指标体系?

有哪些指标体系搭建模型?五个步骤教你从0开始搭建指标体系

一、企业指标体系搭建存在什么问题

许多企业在搭建数据指标体系时遇到了诸多难题,如问题定位不准确、数据采集不完整、目标不一致、报表无序、指标覆盖不全面以及报表价值未充分利用等。
在这里插入图片描述

1、问题定位困难

缺乏系统化规划可能导致构建的数据指标体系偏重于结果型指标,而忽视了过程型和维度型数据的重要性。例如,在设定日活跃用户数(DAU)指标时,若缺少用户设备类型、版本、地域、性别、年龄等维度信息,将难以全面理解用户行为。

2、数据采集不足

若业务团队未能全面规划所需数据,需求将显得零散,导致数据上报同样缺乏系统性。反复根据业务需求补充上报不仅浪费开发资源,也延迟了业务团队对数据的获取和分析。

3、目标不一致性

在构建数据指标体系前未与业务团队就目标达成共识,可能导致最终生成的报表与业务团队的关注点不符,从而无法有效帮助他们发现和解决问题,造成资源浪费和报表冗余。

4、报表无序

随着业务扩展,报表数量增多,若未提前规划好数据指标体系,将导致报表之间信息重复、数据不一致,以及报表组织混乱。业务团队寻找所需报表往往耗时且效率低下。

5、指标覆盖不全面

报表中的数据指标并非越多越好,关键在于指标的全面性和相关性。缺乏前期规划可能导致报表中的指标繁多却缺乏完整性,无法有效反映业务全貌。

6、报表价值未充分利用

许多业务报表未能充分发挥其价值,因为业务团队不清楚报表如何具体助力业务发展,报表仅起到了基础监控的作用。这通常是因为在规划数据指标体系时,只考虑了基础指标。

为了解决这些问题,我们需要采用科学的方法来构建一个全面、系统、高效、业务导向的指标体系,该体系应结合分析型和监控型的特点。常用的构建模型包括北极星指标(North Star Metric)、目标-手段模型(OSM)、AARRR漏斗模型、用户旅程地图(UJM)和互斥完全穷尽(MECE)原则等。通过这些模型,我们可以更好地确保数据指标体系能够满足业务需求,促进业务洞察和决策优化。

在这里插入图片描述

二、指标体系

1.什么是指标体系?

实际工作中,想要准确说清楚一件事是不容易的。例如,你在金融公司工作,工作中可能会听到这样的对话:“大概有1万多人申请贷款吧”“有很多人都没有申请通过”“感觉咱们的审核太严了”。

同事之间这样闲聊说话没什么问题,但是如果是向领导汇报或者是数据分析师在回答业务部门问题的时候就不能这么说了,一定要用准确的数据和指标来描述清楚。例如上边的对话可以改成:

5月4日新申请贷款用户10450人,超目标达成1450人;
5月4日当日申请贷款用户10450人,当日通过2468人;
截至5月6日,5月4日申请贷款的10450名用户中有3690人通过申请,申请通过率35.31%。

上面通过一个指标“申请通过率”说清楚了申请贷款用户的情况。但是实际工作中,往往一个指标没办法解决复杂的业务问题,这就需要使用多个指标从不同维度来评估业务,也就是使用指标体系。

指标体系是从不同维度梳理业务,把指标有系统地组织起来。简而言之,指标体系=指标+体系,所以一个指标不能叫指标体系,几个毫无关系的指标也不能叫指标体系。

2.指标体系有什么用?

我们在讨论一个人是否健康的时候,常常会说出一些名词:体温、血压、体脂率等。当把这些指标综合起来考量,大概就能了解一个人的健康状况。

同样,对于一家公司的业务是否正常(健康),可以通过指标体系对业务进行监控。当业务出现异常时,就能以最快的速度发现问题,开始分析,然后解决这些问题,最大化地减少损失。

指标体系的作用包括:

● 监控业务情况;

● 通过拆解指标寻找当前业务问题;

● 评估业务可改进的地方,找出下一步工作的方向。

3.如何建立指标体系?

可以用下面的方法建立指标体系。
在这里插入图片描述

(1)明确部门KPI,找到合适的一级指标

一级指标是用来评价公司或部门运营情况最核心的指标。例如,某旅游公司在会员积分方面的开销较大, 业务部门关心成本,定的的KPI是合理利用积分抵扣金额,节省成本,所以该部门一级指标定为积分抵扣金额。

一级指标并非只能是一个指标,有可能需要多个一级指标来做综合评价。例如,某网贷公司产品部门的主要职能是开发出符合市场需求的贷款产品,在提升业务量(放款量)的同时,也需要监控业务质量(放款逾期率)。

根据市场和业务运营情况及时调整产品政策,所以该部门的KPI有两个:贷款产品放款金额、贷款产品的坏账率。

贷款产品卖的好光看“放款金额”还不够,还要关注毛利润,这才是真正赚到的钱。同时也需要看用户数,因为用户数直接和获客成本挂钩,要防止营销成本太高、实际没利润这样不可持续情况的发生。

所以该部门确定了三个一级指标:放款金额、毛利润、用户数。

(2)了解业务运营情况,找到二级指标

有了一级指标以后,可以进一步将一级指标拆解为二级指标。具体如何拆解,要看业务是如何运营的。比如销售部门一般按地区运营,就可以从地区维度拆解。市场部门一般按用户运营,就可以从用户维度拆解。

例如前面的案例中一级指标是积分抵扣金额,从订单维度拆解为积分抵扣金额 = 积分抵扣的订单数 * 平均订单抵扣金额,从会员维度拆解为积分抵扣金额 = 积分抵扣的会员数 * 人均抵扣金额。一级指标、二级指标指标的结构如下图。

在这里插入图片描述

(3)梳理业务流程,找到三级指标

一级指标往往是业务流程最终的结果,例如积分抵扣金额,是业务流程(会员->购买旅游产品->使用积分抵扣->支付金额) 最后的一个结果。
在这里插入图片描述
光看一个最后结果是无法监督、改进业务流程的,这就需要更细致一些的指标,也就是添加三级指标。例如,在业务流程中不同会员等级可以抵扣的金额不一样。不同旅游产品线可以抵扣的金额比例也不一样。所以,需要把二级指标按照业务流程拆解为更细的三级指标。

在这里插入图片描述
在会员业务节点可以拆解为LV1级会员数、LV2级会员数、LV3级会员数、LV4级会员数。在购买旅游产品业务节点可以拆解为酒店订单数、机票订单数、跟团游订单数、自由行订单数。最后,确定的指标如下图,因为一级指标、二级指标、三级指标的结构像金字塔,所以下图也叫做指标体系金字塔。
在这里插入图片描述
每个指标从3个方面确定统计口径:

指标含义:这个指标在业务上表示什么?
指标定义:这个指标是怎么定义的?
数据来源:从什么地方收集的原始数据?数据统计的时间范围是什么?

(4)通过报表监控指标,不断更新指标体系

前面步骤找到了一级指标、二级指标和三级指标,到这一步可以把这些指标制作到报表中,通过报表监控指标,不断更新指标体系。

以上案例只是演示一下全部流程,在不同情境下,操作的方式会有区别,遇到的问题也不相同。想要真正掌握数据分析,还是要自己去实践,并不断解决遇到的问题。

4.指标体系有哪些注意事项?

建立指标体系需要注意以下4个问题。

(1)没有一级指标,抓不住重点

工作里最常见的情况是你获得的报表是从离职同事那里交接过来的,或者是领导给你的指标,你只是负责定时更新报表。但是为什么这样做报表?做完了报表给谁看?其实你是不清楚的。

弄清楚这些,需要知道一级指标是什么。如果不能围绕一级指标来做事会闹出笑话来。例如,某银行为了激励员工,根据KPI给分行经理制定的奖励规则如下:

投诉率最低的五个分行经理各奖励2000元现金;
分行客服月通话时长平均≥3.5小时,奖励3000元。

某个分行经理带领团队只放出贷款20万元,在150家分行中排名最后一名,但因为上面KPI达成的好,其收入反而比某些全额达成放款目标的分行经理高。这种不以一级指标(放款金额)为前提的激励方案就是无效的方案。

(2)指标之间没有逻辑关系

如果不按照业务流程来建立指标体系,虽然指标很多,但是指标之间没有逻辑关系。以至于出现问题的时候,找不到对应的业务节点是哪个,没办法解决问题。

(3)拆解的指标没有业务意义

有的报表上的指标很丰富,但是却没有实际的业务意义,导致报表就是一堆“没有用”的数字。

例如:在销售部门,最关注的是销售目标有没有达成,现在达成了多少,接下来的每天应该达成多少,哪些些区域达成最高,哪些区域达成最低。如果不围绕这个业务目标拆解指标,而是随意把指标拆解为用户年龄、性别,这就与业务没有任何关系,只是为了拆解而拆解。

(4)一个人就完成了指标体系和报表,也不和业务沟通

建立指标体系不是1个人能够完成的,需要业务部门(市场、运营、产品等部门统称为业务部门)、数据部门(这里把数据分析师所在的部门统称为数据部门)、开发部门相互之间进行协作。

业务部门会不断提出新的业务需求。如果业务部门认可数据部门做出的分析报告,并希望以后可以随时查询到相关的数据,那么数据部门会把数据产品化,也就是协助开发部门把数据产品做进公司后台系统,一般形式就是报表。

日常工作中,业务部门、数据部门、开发部门部门是像下图这样紧密协作的。
在这里插入图片描述
建立指标体系需要各部门紧密沟通,还需要对公司业务和各部门职能的深刻理解.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/468670.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ANDROIDWORLD: A Dynamic Benchmarking Environment for Autonomous Agents论文学习

这个任务是基于androidenv的。这个环境之前学过,是一个用来进行强化学习的线上环境。而这篇文章的工作就是要给一些任务加上中间的奖励信号。这种训练环境的优点就是动态,与静态的数据集(比如说我自己的工作)不同,因此…

【Android】轮播图——Banner

引言 Banner轮播图是一种在网页和移动应用界面设计中常见的元素,主要用于在一个固定的区域内自动或手动切换一系列图片,以展示不同的内容或信息。这个控件在软件当中经常看到,商品促销、热门歌单、头像新闻等等。它不同于ViewPgaer在于无需手…

容器化技术入门:Docker详解

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 容器化技术入门:Docker详解 容器化技术入门:Docker详解 容器化技术入门:Docker详解 引言 Doc…

AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist

通义千问2.5-7B-Instruct-AWQ量化,但在npu上运行报上面错误,奇怪?: Exception:weight model.layers.0.self_attn.q_proj.weight does not exist AssertionError: weight model.layers.0.self_attn.q_proj.weight does not exist https://…

【SSL-RL】自监督强化学习:随机潜在演员评论家 (SLAC)算法

📢本篇文章是博主强化学习(RL)领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅…

怎么启动python脚本文件

创建一个简单的python入门代码,以便示范。 存储文件并复制该python文件的存储路径。 使用cd 命令切换工作目录到python文件所在的目录。 输入变量环境中的python路径和python文件的名字。 回车执行后,可完成命令行的python文件运行。

DDei在线设计器V1.2.42版发布

V1.2.42版 新特性: 1.快捷编辑框可以映射到主控件的多个属性上,从而实现快速编辑。 2.跟随图形的支持范围增加,从仅支持线控件到支持所有控件 2.新增控件双击回调函数EVENT_CONTROL_DBL_CLICK,可以用于覆盖默认的快速编辑逻辑…

信息安全工程师(78)网络安全应急响应技术与常见工具

前言 网络安全应急响应是指为应对网络安全事件,相关人员或组织机构对网络安全事件进行监测、预警、分析、响应和恢复等工作。 一、网络安全应急响应技术 网络安全应急响应组织 构成:网络安全应急响应组织主要由应急领导组和应急技术支撑组构成。领导组负…

网络安全之SQL初步注入

一.字符型 平台使用pikachu $name$_GET[name]; ​ $query"select id,email from member where username$name"; 用户输入的数据会被替换到SQL语句中的$name位置 查询1的时候,会展示username1的用户数据,可以测试是否有注入点(闭…

Gradle命令编译Android Studio工程项目并签名

文章目录 gradlew命令gradlew编译debug apkgradlew编译release apkapksigner签名apkgradlew注意事项 gradlew命令 gradlew 是一个脚本文件,它允许你在没有全局安装 Gradle 的情况下运行 Gradle 构建。这个脚本在多平台上可用,对于 Windows 系统来说是 g…

B2B订货系统功能设计与代码开发(PHP + MySQL)

在B2B(Business to Business)电子商务中,企业之间的商品订购、交易和供应链管理是核心功能。一个高效的B2B订货系统可以帮助企业管理库存、订单、采购等业务流程。本文将介绍一个基于PHP与MySQL技术栈的B2B订货系统的功能设计与开发流程。 一…

增删改查基础项目总结

上篇中主要负责后端部分完成了一个简单的学习辅助系统部分界面,主要针对增删改查进行了练习,过程中遇到了一些细节上的问题以及当时做的时候去查阅的一些之前没有太注意到的额外知识,所以还需要进行进一步梳理,像登录校验的方法以…

【Zookeeper集群搭建】安装zookeeper、zookeeper集群配置、zookeeper启动与关闭、zookeeper的shell命令操作

目录 一、安装Zookeeper 二、配置Zookeeper集群 三、Zookeeper服务的启动与关闭 四、Zookeeper的shell操作 前情提要:延续上篇【Hadoop和Hbase集群配置】继续配置Zookeeper,开启三台虚拟机Hadoop1、Hadoop2、Hadoop3,进入终端&#xff0c…

智能社区服务小程序+ssm

智能社区服务小程序 摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了智能社区服务小程序的开发全过程。通过分析智能社区服务小程序管理的不足,创建了一个计算机管理智能社区服务小程序的方案。文…

【C++】vector模拟实现、迭代器失效问题(超详解)

vector会使用之后我们来模拟实现一下,通过对vector的模拟实现,我们来说一下迭代器失效问题。 1.准备工作 在头文件vector.h里声明和实现函数,然后在test.cpp里测试代码的正确性。 在vector.h中用命名空间分隔一下,因为c库里面也有…

前端学习八股资料CSS(一)

🤔🤔宝子们,好久不见啊!今日继续分享前端八股笔记,好多友友们觉得笔记对于自己学习复习或面试复习或平时加强知识非常有用,收到了大家的好评,谢谢大家的喜欢,我会坚持继续更新的&…

【进阶】Stable Diffusion 插件 Controlnet 安装使用教程(图像精准控制)

Stable Diffusion WebUI 的绘画插件 Controlnet 最近更新了 V1.1 版本,发布了 14 个优化模型,并新增了多个预处理器,让它的功能比之前更加好用了,最近几天又连续更新了 3 个新 Reference 预处理器,可以直接根据图像生产…

小程序源码-模版 100多套小程序(附源码)

一、搭建开发环境 搭建环境可以从这里开始: 微信小程序从零开始开发步骤(一)搭建开发环境 - 简书 二、程序示例 1、AppleMusic https://download.csdn.net/download/m0_54925305/89977187 2、仿B站首页 https://download.csdn.net/downlo…

【Python-AI篇】K近邻算法(KNN)

0. 前置----机器学习流程 获取数据集数据基本处理特征工程机器学习模型评估在线服务 1. KNN算法概念 如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中大多数属于某一个类别,则该样本也属于这一个类别 1.1 KNN算法流程总…

Deepin 系统中安装Rider和Uno Platform

1、在系统的中断命令行中输入如下命令,安装.NET 8环境。 wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb -O packages-microsoft-prod.debsudo dpkg -i packages-microsoft-prod.debsudo apt-get updatesudo apt-get insta…