机器学习中的分类:决策树、随机森林及其应用

机器学习中的分类:决策树、随机森林及其应用

机器学习是一门多学科交叉专业,涵盖概率论、统计学、近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时地模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。在机器学习领域,决策树(Decision Tree)和随机森林(Random Forest)是两种非常流行且强大的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。

一、决策树的基本原理与构建过程

决策树是一种非线性有监督分类模型,它通过树状结构模拟人类决策过程,将数据集分割成不同的子集,并在每个子集上应用特定的规则来预测目标变量的值。决策树的节点表示数据集中的特征,边表示这些特征的取值,叶子节点表示最终的预测结果。

1. 决策树的构建过程

决策树的构建是一个递归的过程,通常包括以下几个步骤:

  • 选择最佳的划分属性:从当前数据集中选择一个属性作为划分标准,将数据集分为不同的子集。通过某种指标(如信息增益、基尼指数等)来评估每个属性的划分效果,选择使得划分后子集更加纯净的属性作为划分标准。
  • 递归划分:对每个子集递归地应用上述步骤,继续划分子集,直到满足停止条件。停止条件包括:当前结点包含的样本全属于同一类别,无需划分;当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;当前结点包含的样本集合为空,不能划分。
  • 剪枝:构建完整的决策树后,为了防止过拟合,通常需要对树进行剪枝。剪枝的目的是通过移除一些分支或叶节点来简化模型,提高泛化能力。剪枝的方式可以是预剪枝(在构建树时进行剪枝)或后剪枝(在构建完整树后再进行剪枝)。
2. 决策树的常用算法
  • ID3算法:使用信息增益作为划分属性的标准。信息增益越大,表示使用该属性进行划分所获得的“纯度提升”越大。
  • C4.5算法:对ID3算法进行了改进,使用信息增益率来选择最优划分属性,以减少对可取值数目较多属性的偏好。
  • CART算法:使用基尼指数作为划分属性的标准,既可以用于分类也可以用于回归。CART假设决策树是二叉树,内部节点的特征取值是“是”和“否”。
3. 决策树的优缺点
  • 优点
    • 结构简单,易于理解和解释。
    • 训练和预测的速度通常较快。
    • 可以处理非线性关系。
  • 缺点
    • 单一决策树可能容易过拟合,特别是在处理复杂问题时。
    • 对噪声数据较为敏感。
二、随机森林的基本原理与构建过程

随机森林是一种监督式学习算法,通过集成多个决策树进行分类或回归。它使用Bagging思想,通过随机抽样训练集和特征子集生成多棵树,以降低过拟合风险。

1. Bagging思想

Bagging(Bootstrap Aggregating)是一种集成学习方法,通过生成多个模型来提高预测性能。具体步骤如下:

  • 随机采样:从原始数据集中随机有放回地抽取多个子样本,每个子样本与原始数据集大小相同。
  • 模型训练:对每个子样本训练一个独立的模型。
  • 结果集成:通过投票或平均值等方法,将所有模型的预测结果综合,得出最终预测。
2. 随机森林的构建过程

生成随机森林的过程包括以下几个步骤:

  • 随机抽取训练样本:从训练集中随机有放回地抽取N个样本,用于每棵树的训练集。每棵树的训练集可能包含重复样本,且部分样本可能未被抽取。
  • 随机选取特征:对于每棵树的每个节点,在所有特征中随机选择m个特征(m远小于特征总数M),然后从这些特征中选择最佳特征进行分裂。
  • 树的生长:每棵树都尽可能深地生长,直到所有叶节点纯净或者不能再分裂。这一过程没有剪枝步骤,以最大化树的复杂度。

在随机森林中,最终分类结果由所有决策树的投票结果决定。投票机制包括多数投票、加权投票等。

3. 随机森林的优缺点
  • 优点
    • 准确率极高,通过集成多个决策树,能够减少过拟合,提高模型的泛化能力。
    • 能够处理大规模数据集和高维数据,无需特征归一化和处理缺失值。
    • 能够评估特征的重要性,有助于特征选择和数据理解。
    • 具有良好的抗噪声能力,对缺失值问题也能获得很好的结果。
  • 缺点
    • 训练时间较长,特别是当包含大量决策树和复杂特征时。
    • 占用更多内存,因为需要存储每棵树的信息。
    • 预测过程相对较慢,因为需要将样本在每棵树上进行遍历。
三、决策树与随机森林的应用场景

决策树和随机森林在多个领域都有广泛的应用,包括但不限于:

1. 市场营销

用于统计客户的来源、保留和流失情况,进行市场细分和营销策略制定。通过决策树或随机森林,企业可以分析客户行为,识别潜在客户群体,制定更有针对性的营销策略。

2. 医疗保健

用于预测疾病的风险和病患者的易感性,辅助医生进行诊断和治疗决策。通过集成多个决策树的随机森林,可以准确预测疾病的发生概率,为医生提供科学的决策依据。

3. 金融风控

用于评估贷款申请人的信用等级,预测违约风险等。金融机构可以利用决策树或随机森林模型,对申请人的信用记录、收入状况等数据进行综合分析,评估其信用风险,降低不良贷款率。

四、决策树与随机森林的实现方法

在实现决策树分类器模型时,通常需要进行以下几个步骤:

  • 数据预处理:包括数据清洗、特征选择、特征缩放等处理过程,以提高模型的准确性和稳定性。
  • 特征选择:包括信息增益、基尼指数等算法,以选择最优的特征作为划分条件。
  • 树的生成:包括递归地构建决策树的过程,以确定每个区间对应的类别标签。
  • 剪枝:包括预剪枝和后剪枝两种方法,以避免模型过拟合。
  • 模型评估:包括模型的准确率、精度、召回率等指标的计算,以评估模型的性能。
  • 模型应用:包括利用模型进行预测、推荐、分类等任务,以应用于实际问题中。

在实现随机森林模型时,同样需要进行数据预处理和特征选择,但不需要进行剪枝。随机森林通过集成多棵决策树来提高模型的准确性和稳定性。

在实现过程中,可以使用现有的机器学习库,如scikit-learn、TensorFlow等,也可以自己编写代码实现。使用现有的机器学习库可以大大简化模型的实现过程,提高开发效率和代码质量。自己编写代码可以更好地理解决策树和随机森林的原理和实现方法,以便在实际问题中进行调整和优化。

五、总结

决策树和随机森林是机器学习领域中两种非常强大且流行的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。决策树具有结构简单、易于理解和解释等优点,但容易过拟合和对噪声数据敏感。随机森林通过集成多个决策树,能够减少过拟合,提高模型的泛化能力,并具有良好的抗噪声能力和对缺失值问题的处理能力。在实际应用中,需要根据具体问题的特点和需求来选择合适的算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/468984.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt_day5_常用类

常用类 目录 1. QString 字符串类(掌握) 2. 容器类(掌握) 2.1 顺序容器QList 2.2 关联容器QMap 3. 几种Qt数据类型(熟悉) 3.1 跨平台数据类型 3.2 QVariant 统一数据类型 3.3 QStringList 字符串列表 4. QD…

【THM】linux取证 DisGruntled

目录 0x00 房间介绍 0x01 连接并简单排查 0x02 让我们看看做没做坏事 0x03 炸弹已埋下。但何时何地? 0x04 收尾 0x05 结论 0x00 房间介绍 嘿,孩子!太好了,你来了! 不知道您是否看过这则新闻,我…

MFC中Excel的导入以及使用步骤

参考地址 在需要对EXCEL表进行操作的类中添加以下头文件:若出现大量错误将其放入stdafx.h中 #include "resource.h" // 主符号 #include "CWorkbook.h" //单个工作簿 #include "CRange.h" //区域类,对Excel大…

智能化温室大棚控制系统设计(论文+源码)

1 系统的功能及方案设计 本次智能化温室大棚控制系统的设计其系统整体结构如图2.1所示,整个系统在器件上包括了主控制器STC89C52,温湿度传感器DHT11,LCD1602液晶,继电器,CO2传感器,光敏电阻,按…

一篇文章教会你使用Linux的‘sed‘基础命令

Linux sed 命令详解 Linux sed 命令详解1、基本语法2、常用命令2.1 替换2.2 删除行2.3 查找并打印行2.4 插入与追加2.5 多命令组合 3、高级用法3.1 替换并保存结果到新文件3.2 在范围内替换3.3 正则表达式匹配 4、小结 Linux sed 命令详解 sed 是 Linux 系统中非常强大的流编辑…

集群化消息服务解决方案

目录 集群化消息服务解决方案项目概述架构图使用说明服务端通过API接口推送消息给客户端调用方式 请求参数返回参数 客户端推送消息连接websocket或发送消息 接收消息项目地址作者信息 集群化消息服务解决方案 项目概述 集群化消息服务解决方案是一种用于处理大量消息的高可用…

elementUI 点击弹出时间 date-picker

elementUI的日期组件,有完整的UI样式及弹窗,但是我的页面不要它的UI样式,点击的时候却要弹出类似的日期选择器,那怎么办呢? 以下是elementUI自带的UI风格,一定要一个输入框来触发。 这是我的项目中要用到的…

【go从零单排】go中的三种数据类型array、slices、maps

Don’t worry , just coding! 内耗与overthinking只会削弱你的精力,虚度你的光阴,每天迈出一小步,回头时发现已经走了很远。 array数组 package mainimport "fmt"func main() {var a [5]int //var关键字定义数组,[5]表…

科技改变阅读习惯:最新研究揭示电子阅读器的普及趋势

据QYResearch调研团队最新报告“全球电子阅读器市场报告2023-2029”显示,预计2029年全球电子阅读器市场规模将达到6.9亿美元,未来几年年复合增长率CAGR为0.4%。 如上图表/数据,摘自QYResearch最新报告“全球电子阅读器市场研究报告2023-2029.…

解决 VSCode 中 C/C++ 编码乱码问题的两种方法

解决 VSCode 中 C/C 编码乱码问题的两种方法 在中国地区,Windows 系统中的 cmd 和 PowerShell 默认编码是 GBK,但 VSCode 默认使用 UTF-8 编码。这种编码不一致会导致在 VSCode 终端中运行 C/C 程序时出现乱码。以下介绍两种方法来解决这一问题。 方法…

UE5遇到问题记录

问题描述: 在让敌人自动追踪玩家的时候一开始运行就会播放攻击的动画 解决方法: 这样是因为敌人一开始就检测到自己了,所以触发动画。 方式一:加一个条件 方式二:改一下碰撞预设

内网对抗-信息收集篇SPN扫描DC定位角色区域定性服务探针安全防护凭据获取

知识点: 1、信息收集篇-网络架构-出网&角色&服务&成员 2、信息收集篇-安全防护-杀毒&防火墙&流量监控 3、信息收集篇-密码凭据-系统&工具&网站&网络域渗透的信息收集: 在攻防演练中,当完成边界突破后进入内…

基于Matlab 疲劳驾驶检测

Matlab 疲劳驾驶检测 课题介绍 该课题为基于眼部和嘴部的疲劳驾驶检测。带有一个人机交互界面GUI,通过输入视频,分帧,定位眼睛和嘴巴,通过眼睛和嘴巴的张合度,来判别是否疲劳。 二、操作步骤 第一步:最…

11.11 代码块

一 java 1.代码块 1) 理解 使用构造器时:先默认 调用代码块内容 再调用 构造器内容【代码块 > 构造器】 1.1 细节 1)静态代码块 只能加载一次 2)先调用父类代码块 再子类代码块 3)静态代码块是随着类加载而执行…

在gitlab,把新分支替换成master分支

1、备份master分支,可以打tag 2、删除master分支 正常情况下,master分支不允许删除,需要做两个操作才能删除 a、变更项目默认分支为非master分支,可以先随便选择 b、取消master为非保护分支 操作了上述两步,就可以删…

在使用element中的抽屉<el-drawer>页签<el-tabs/>组合时,echarts图表宽度显示异常问题

类似这种情况,宽度异常 原因:在展示出抽屉时,图表的组件一件初始化了,导致他的宽度提前设定好了(我默认的style"width: 100%; height: 300px;"),我得解决方法有2个: 1、第…

《大模型应用开发极简入门》笔记

推荐序 可略过不看。 初识GPT-4和ChatGPT LLM概述 NLP的目标是让计算机能够处理自然语言文本,涉及诸多任务: 文本分类:将输入文本归为预定义的类别。自动翻译:将文本从一种语言自动翻译成另一种语言,包括程序语言。…

Unicode字符集(万国码)

1.三种编码方式: UTF-16:16个bit位(2个字节)存储 UTF-32:32个bit位(4个字节)存储 UTF-8:可变长度字符编码。1-4个字节存储,只需记住:英文字母1个字节表示&…

支持 Win10 的网络环境模拟(丢包,延迟,带宽)

升级 Windows 10 以后,原来各种网络模拟软件都挂掉了,目前能用的就是只有 clumsy: 唯一问题是不支持模拟带宽,那么平时要模拟一些糟糕的网络情况的话,是不太方便的,而开虚拟机用 Linux tc 或者设置个远程 l…

【Homework】【5】Learning resources for DQ Robotics in MATLAB

Lesson 5 代码-TwoDofPlanarRobot.m 表示一个 2 自由度平面机器人。该类包含构造函数、计算正向运动学模型的函数、计算平移雅可比矩阵的函数,以及在二维空间中绘制机器人的函数。 classdef TwoDofPlanarRobot%TwoDofPlanarRobot - 表示一个 2 自由度平面机器人类…