llama factory lora 微调 qwen2.5 7B Instruct模型

项目背景 甲方提供一台三卡4080显卡 需要进行qwen2.5 7b Instruct模型进行微调。以下为整体设计。
要使用 LLaMA-FactoryQwen2.5 7B Instruct模型 进行 LoRA(Low-Rank Adapters)微调,流程与之前提到的 Qwen2 7B Instruct 模型类似。LoRA 微调是一种高效的微调方法,通过低秩适配器层来调整预训练模型的权重,而不是全量训练整个模型。

环境准备

确保你已经安装了必要的依赖,包括 LLaMA-FactoryDeepSpeedtransformers 库。如果尚未安装,可以使用以下命令安装:

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

如果使用量化 gptq 需要安装以下环境

pip install auto_gptq optimum

如果使用量化 awq 需要安装以下环境

pip install autoawq

获取 Qwen2.5 7B Instruct 模型 权重

确保你已经获取了 Qwen2.5 7B Instruct 模型 的预训练权重。如果没有,你可以从 Hugging Face 或其他平台上下载该模型,或者根据需要联系模型发布者获取相应的模型文件。这里采用魔搭社区下载qwen2.5 7b Instruct模型。

原模型

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct')

int 8 量化模型

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct-GPTQ-Int8')

int 4 量化模型

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct-AWQ')

3配置 LoRA 微调

LLaMA-Factory 中,LoRA 微调通常需要对模型进行一些配置,以下是实现 LoRA 微调的关键步骤:

编辑llama factory训练参数

新建llama factory 训练配置文件

examples/train_lora/qwen2.5_7b_lora_sft.yaml

加载 Qwen2.5 7B Instruct 模型 和 数据集,并设置 LoRA 训练范围。

### model
model_name_or_path: Qwen/Qwen2.5-7B-Instruct-AWQ### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16### output
output_dir: saves/qwen2.5-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

这段配置文件主要用于 LoRA 微调 Qwen2.5-7B-Instruct-AWQ 模型,并且进行了具体的参数设置。每个部分都涉及模型、方法、数据集、输出、训练、评估等配置。以下是对每个部分的详细解读:

模型配置 (model)

model_name_or_path: Qwen/Qwen2.5-7B-Instruct-AWQ
  • model_name_or_path:指定了要微调的预训练模型的名称或路径。在这里,它指向了 Qwen2.5-7B-Instruct-AWQ 模型。你可以通过指定这个模型的路径或者从 Hugging Face 之类的模型库中加载该模型。

方法配置 (method)

stage: sft
do_train: true
finetuning_type: lora
lora_target: all
  • stage: sft:表示当前的训练阶段是 SFT(Supervised Fine-Tuning) 阶段,意味着模型将在特定的标注数据集上进行监督学习。
  • do_train: true:表示进行训练。
  • finetuning_type: lora:指定了微调的类型是 LoRA(Low-Rank Adapter),意味着通过低秩适配器层来进行微调,而不是全量训练整个模型。
  • lora_target: all:表示在模型的所有层上应用 LoRA 微调。你也可以选择特定的层,如 attentionffn,但这里设置为 all,意味着所有的层都会应用 LoRA。

数据集配置 (dataset)

dataset: identity,alpaca_en_demo
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
  • dataset: identity,alpaca_en_demo:指定了要使用的数据集,这里列出了两个数据集:identityalpaca_en_demo。你需要确保这两个数据集已经准备好并且路径正确。identity 可能是一个自定义数据集,alpaca_en_demo 是一个英文数据集。
  • template: qwen:指定了数据集的模板,这个模板通常用于数据预处理过程,它可能包括对文本的格式化或特殊的标注。
  • cutoff_len: 2048:指定了最大输入长度(单位为token)。如果输入文本超过这个长度,它将会被截断。这个长度与模型的最大接受长度有关,通常需要根据具体模型的设置调整。
  • max_samples: 1000:指定了使用的数据集样本的最大数量,这里设置为1000,意味着将只使用最多1000个样本进行训练。
  • overwrite_cache: true:如果缓存目录存在,则覆盖缓存。这个选项通常用于确保每次训练时使用最新的数据。
  • preprocessing_num_workers: 16:指定了数据预处理时使用的工作线程数,16个线程可以加速数据加载和预处理过程。

输出配置 (output)

output_dir: saves/qwen2-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
  • output_dir: saves/qwen2-7b/lora/sft:指定了训练过程中保存模型和日志的输出目录。在此路径下,将保存微调后的模型、检查点等文件。
  • logging_steps: 10:每10步记录一次日志。
  • save_steps: 500:每500步保存一次模型检查点。这样你可以在训练过程中定期保存模型的状态,避免意外中断时丢失训练进度。
  • plot_loss: true:在训练过程中,启用损失值可视化(例如通过TensorBoard或其他工具)。这有助于监控训练过程中模型的表现。
  • overwrite_output_dir: true:如果输出目录已存在,则覆盖它。确保训练过程中不会因为目录存在而出现错误。

训练配置 (train)

per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
  • per_device_train_batch_size: 1:每个设备的训练批次大小设置为1。这通常与GPU的显存大小相关,如果显存较小,批次大小可以设置为1。
  • gradient_accumulation_steps: 2:梯度累积的步数。如果批次大小设置为1,但需要更多的梯度累积,可以通过此设置实现。
  • learning_rate: 1.0e-4:设置学习率为 0.0001,这是训练时调整权重的步长。
  • num_train_epochs: 3.0:训练的总周期数,这里设置为3轮。通常需要根据训练集大小和收敛速度来调整这个值。
  • lr_scheduler_type: cosine:学习率调度器类型,使用 cosine 调度策略,通常能在训练后期逐渐减小学习率。
  • warmup_ratio: 0.1:学习率的预热比例,设置为 0.1 表示前10%的训练步骤中,学习率将逐步增加到初始值。
  • bf16: true:启用 bfloat16 精度进行训练,以减少显存消耗并加速训练。这通常需要支持 bfloat16 的硬件(如TPU)。
  • ddp_timeout: 180000000:设置 Distributed Data Parallel(DDP) 模式下的超时。这个值通常是为了防止分布式训练过程中发生超时错误。

评估配置 (eval)

val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
  • val_size: 0.1:指定验证集的大小为训练数据的 10%,即从训练数据集中划分出10%作为验证集。
  • per_device_eval_batch_size: 1:评估时每个设备的批次大小为1。
  • eval_strategy: steps:评估策略设置为按步数评估,即每训练一定步数后进行评估。
  • eval_steps: 500:每500步进行一次评估。

微调过程

配置好训练参数和数据集后,你可以开始微调模型:

llamafactory-cli train examples/train_lora/qwen2.5_7b_lora_sft.yaml

原生显存占用

在这里插入图片描述

int 8 显存占用

| NVIDIA-SMI 550.90.07              Driver Version: 550.90.07      CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA vGPU-32GB               On  |   00000000:31:00.0 Off |                  N/A |
| 30%   40C    P2            168W /  320W |   16894MiB /  32760MiB |    100%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA vGPU-32GB               On  |   00000000:65:00.0 Off |                  N/A |
| 30%   40C    P2            182W /  320W |   16892MiB /  32760MiB |    100%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------++-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|

int 4 显存占用

在这里插入图片描述

根据测试环境显存占用预估 int8 与 int4量化可以在3卡4080环境中进行qwen2.5 7B Instruct 模型的训练任务

小结

通过以上步骤,你可以使用 LoRA 方法对 Qwen2.5 7B Instruct 模型 进行高效的微调。使用 LoRA 可以显著减少训练过程中所需的计算资源和存储需求,同时依然能够获得出色的微调效果。确保在训练过程中使用合适的数据集,并根据实际需要调整 LoRA 的参数(如秩 rlora_alpha)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/471408.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GPT-5 要来了:抢先了解其创新突破

Microsoft 的工程师计划于 2024 年 11 月在 Azure 上部署 Orion (GPT-5)。虽然这一版本不会向公众开放,但其上线被视为人工智能领域的一个重要里程碑,并将产生深远的影响。 文章目录 GPT-5 真的要来了GPT-4 的局限性GPT-5 的创新突破与遗留挑战GPT-5 预期…

微澜:用 OceanBase 搭建基于知识图谱的实时资讯流的应用实践

本文作者: 北京深鉴智源科技有限公司架构师 郑荣凯 本文整理自北京深鉴智源科技有限公司架构师郑荣凯,在《深入浅出 OceanBase 第四期》的分享。 知识图谱是一项综合性的系统工程,需要在在各种应用场景中向用户展示经过分页的一度关系。 微…

FluentUI使用

首先向Qt Qml FluentUI组件库的作者zhuzichu520致敬! 一、源码下载地址: 1)GitHub - zhuzichu520/FluentUI: FluentUI for QML 2)GitCode - 全球开发者的开源社区,开源代码托管平台 二、Qt6下载地址: qt-online-i…

`node-gyp` 无法找到版本为 `10.0.19041.0` 的 Windows SDK

从你提供的错误信息来看,问题出在 node-gyp 无法找到版本为 10.0.19041.0 的 Windows SDK。我们可以尝试以下几种方法来解决这个问题: 完整示例 方法 1:安装指定版本的 Windows SDK 下载并安装 Windows SDK: 访问 Windows SDK 下…

CTFHub每日练习

文章目录 技能树CTF Web信息泄露目录遍历PHPINFO备份文件下载网站源码bak文件vim缓存.DS_Store Git泄露Logstash index方法一方法二 密码口令弱口令 技能树 CTF Web 信息泄露 目录遍历 PHPINFO 备份文件下载 网站源码 当开发人员在线上环境中对源代码进行了备份操作&#x…

【PowerHarmony】电鸿蒙学习记录-编写helloworld!

入门 一、编写HelloWorld1.1 编译SDK1.2 业务构建1.2.1 编写HelloWorld业务代码1.2.3 编辑业务构建文件 1.3 添加新组件1.4 编辑组件条目1.5 编译验证1.6 新增文件结构展示 一、编写HelloWorld 1.1 编译SDK 可以在VSCode终端中编译SDK源码,确认编译通过后即可开始…

【Excel】ToRow超级查找函数

看拼写ToRow的作用该是转换为行,的确如此,它可以把一个表格转换为一行。TOROW(A1:C6) 之所以敢挑Vlookup,是因为它的第2个参数为2时可以忽略错误值。TOROW(F9:F13,2) 所以要查找出符合条件的,只需要把不符合条件的变成错误值&am…

前缀和技巧解析

前缀和技巧解析 前缀和(Prefix Sum)是一种常用的算法技巧,用于高效地处理一系列连续子数组和的问题。通过构建一个额外的数组来存储从数组起始位置到当前位置的累计和,可以在常数时间内快速计算任意区间的和。 前缀和应用的典型…

分享 pdf 转 word 的免费平台

背景 找了很多 pdf 转 word 的平台都骗进去要会员,终于找到一个真正免费的,遂分享。 网址 PDF转Word转换器 - 100%免费市面上最优质的PDF转Word转换器 - 免费且易于使用。无附加水印 - 快速将PDF转成Word。https://smallpdf.com/cn/pdf-to-word

前端面试笔试(二)

目录 一、数据结构算法等综合篇 1.HTTP/2、ETag有关 二、代码输出篇 1.new URL,url中的hostname,pathname,href 扩展说一下url的组成部分和属性 URL的组成部分 urlInfo 对象的属性 2.一个递归的输出例子 3.数组去重的不普通方法1 4.数…

netmap.js:基于浏览器的网络发现工具

netmap.js是一款基于浏览器,用于提供主机发现和端口扫描功能的网络发现工具。 netmap.js的执行速度也非常的快,由于其使用了es6-promise-pool,因此它可以有效地运行浏览器允许的最大并发连接数。 动机 由于我正需要一个基于浏览器的端口扫…

MySQL(5)【数据类型 —— 字符串类型】

阅读导航 引言一、char🎯基本语法🎯使用示例 二、varchar🎯基本语法🎯使用示例 三、char 和 varchar 比较四、日期和时间类型1. 基本概念2. 使用示例 五、enum 和 set🎯基本语法 引言 之前我们聊过MySQL中的数值类型&…

百度搜索AI探索版多线程批量生成TXT原创文章软件-可生成3种类型文章

百度搜索AI探索版是百度推出的一款基于大语言模型文心一言的综合搜索产品‌。以下是关于百度搜索AI探索版的详细介绍: ‌产品发布‌:百度搜索AI探索版在百度世界大会上进行了灰度测试,并面向用户开放体验‌。 ‌核心功能‌:与传…

websocket初始化

websocket初始化 前言 上一集我们HTTP的ping操作就可以跑通了,那么我们还有一个协议---websocket,我们在这一集就要去完成我们websocket的初始化。 分析 我们在初始化websocket的之前,我们考虑一下,我们什么时候就要初始化我们…

Git在版本控制中的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 Git在版本控制中的应用 Git在版本控制中的应用 Git在版本控制中的应用 引言 Git 概述 定义与原理 发展历程 Git 的关键技术 分布…

[JAVAEE] 面试题(四) - 多线程下使用ArrayList涉及到的线程安全问题及解决

目录 一. 多线程下使用ArrayList 1.1. 自行判断加锁 1.2 使用Collections.synchronizedList()套壳加锁 1.3 CopyOnWriteArrayList类 二. 总结 一. 多线程下使用ArrayList 多线程下使用ArrayList会涉及到线程安全问题, 例如: public static void main(String[] args) thro…

python——面向对象

一、面向对象编程 1.1 面向过程与面向对象 面向过程和面向对象都是一种编程方式,只不过再设计上有区别。 1.1.1 面向过程pop: 举例:孩子上学 1. 妈妈起床 2. 妈妈洗漱 3. 妈妈做饭 4. 妈妈把孩子叫起来 5. 孩子起床 6. 孩子洗漱 7. 孩子吃…

【缺陷检测】Anomaly Detection via Reverse Distillation from One-Class Embedding

论文地址 代码地址 动机 论文针对传统的知识蒸馏的方案提出了一个问题:认为之前的(基于像素点的重建)方案[1,2]容易阻碍异常表现的多样性 传统的知识蒸馏teacher和student的网络架构很相似或者几乎相同而且teacher和student的输入流都是…

【PHP】ThinkPHP基础

下载composer ComposerA Dependency Manager for PHPhttps://getcomposer.org/ 安装composer 查看composer是否安装 composer composer --version 安装 ThinkPHP6 如果你是第一次安装的话,首次安装咱们需要打开控制台: 进入后再通过命令,在命令行下面&a…

SpringBoot(十八)SpringBoot集成Minio

项目上传文件集成一下Minio,下面是我在项目中集成Minio的全过程。 首先介绍一下Minio:MinIO是高性能的对象存储,单个对象最大可达5TB。适合存储图片、视频、文档、备份数据、安装包等一系列文件。是一款主要采用Golang语言实现发开的高性能、分布式的对象存储系统。客户端支…