【数据结构】AVL树

        引言:在实际情况中,数据不仅仅要存储起来,还要进行对数据进行搜索,为了方便进行高效搜索(在此之前的数据结构的搜索基本都是暴力搜索)二叉搜索树应运而生。但是在极端情况下(我们按照有序的方式进行插入),二叉搜索树就会退化成单支树(每个结点最多只有一个孩子结点,其实就是链表),效率变为O(N),效率低下。

        两位俄罗斯的数学家提出了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。这个时候AVL树这种数据结构就诞生了,增删查改搜索效率非常高,效率可以达到O(logN)。158b587e364247ffa78f42904e8e9969.jpeg


AVL树(平衡二叉树)的概念

        平衡二叉树,全称为平衡二叉搜索树,简称AVL树。英文:Balanced Binary Tree (BBT),注:二叉查找树(BST)

平衡因子的概念

平衡因子(bf):结点的右子树的深度减去左子树的深度。
即: 结点的平衡因子 = 右子树的高度 - 左子树的高度

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  1. 它的左右子树都是AVL树
  2. 左右子树高度之差(简称平衡因子)的绝对值不超过1

d3a91ac269ca446bb4fdb10c843df75d.png


AVL树 节点的定义

template<class K,class V>
struct AVLTreeNode
{
AVLTreeNode(const pair<K, V>& kv)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _kv(kv), _bf(0)
{}
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
pair<K, V> _kv;
int _bf; // 该节点的平衡因子
};

AVL树的插入

        AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么,AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子(如果调节过程中出现平衡因子2/-2,则根据情况判断进行旋转)

平衡因子的更新

是否继续更新依据:子树的高度是否变化

1、parent->_bf == 0 说明之前parent->_bf== 1 或者 -1

说明之前parent一边高一边低,这次插入填上矮的那边,parent所在子树高度不变,不需要继续往上更新

2、parent->_bf == 1 或 -1 说明之前parent->_bf == 0

两边一样高,现在插入一边更高了,parent所在子树高度变了,继续往上更新
3、parent->_bf == 2 或 -2,说明之前parent->_bf == 1 或者 -1

插入之后不平衡了,违反规则,需要进行旋转处理

bool Insert(const pair<K, V>& kv)
{//按照二叉搜索树的方式插入新节点if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}// 链接父亲cur->_parent = parent;//调整节点的平衡因子// 1、更新平衡因子while (parent) // parent为空,也就更新到根{// 新增在右,parent->bf++;// 新增在左,parent->bf--;if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}// 就地处理--旋转if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 旋转if (parent->_bf == 2 && cur->_bf == 1){//右子树的右节点RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){//左子树的左节点RotateR(parent);}else if (parent->_bf == -2 && cur->_bf == 1){//插入位置在左子树的右子树下的结点RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){//插入位置在右子树的左子树下的结点RotateRL(parent);}else{assert(false);}break;}else{assert(false);}}return true;
}

AVL树的旋转

        如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

  • 新节点插入较高右子树的右侧---右右:左单旋
  • 新节点插入较高左子树的左侧---左左:右单旋
  • 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
  • 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

旋转之后要保证
1、让这颗子树左右高度不超过1
2、旋转过程中继续保持他是搜索树
3、更新调整孩子节点的平衡因子
4、让这颗子树的高度跟插入前保持一致

插入结点的路径如果是直线那么就是单旋,单旋的重点在于旋转的过程的实现。

35f2113581b5403684cca70d47e8fbc5.jpeg

void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* ppNode = parent->_parent;subR->_left = parent;parent->_parent = subR;if (ppNode == nullptr){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}parent->_bf = subR->_bf = 0;
}

void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}Node* ppNode = parent->_parent;subL->_right = parent;parent->_parent = subL;//if (_root == parent)if (ppNode == nullptr){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}subL->_bf = parent->_bf = 0;
}

插入结点的路径如果是折线那么就是双旋,双旋就是进行两次单旋,所以双旋的重点在于平衡因子的更新,要按照旋转前subLR或者subRL结点的平衡因子(0/1/-1)进行分情况讨论

void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == -1) // subLR左子树新增{subL->_bf = 0;parent->_bf = 1;subLR->_bf = 0;}else if (bf == 1) // subLR右子树新增{parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if (bf == 0) // subLR自己就是新增{parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else{assert(false);}
}

void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);if (bf == -1){subRL->_bf = parent->_bf = 0;subR->_bf = 1;}else if (bf == 1){subRL->_bf = subR->_bf = 0;parent->_bf = -1;}else if (bf == 0){parent->_bf = subRL->_bf = subR->_bf = 0;}else{assert(false);}
}

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  • 验证其为二叉搜索树:
    • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  • 验证其为平衡树:
    • 每个节点子树高度差的绝对值不超过1(注意节点中可能没有平衡因子)
    • 节点的平衡因子是否计算正确
void _InOrder(Node* root)
{if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);
}int _Height(Node* root)
{if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}bool _IsBalanceTree(Node* root)
{// 空树也是AVL树if (nullptr == root)return true;// 计算pRoot结点的平衡因子:即pRoot左右子树的高度差int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);int diff = rightHeight - leftHeight;// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者// pRoot平衡因子的绝对值超过1,则一定不是AVL树if (abs(diff) >= 2){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != diff){cout << root->_kv.first << "平衡因子异常" << endl;return false;}// pRoot的左和右如果都是AVL树,则该树一定是AVL树return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}

AVL树的性能

        AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2(N)。但是如果要对AVL树做一些结构修改的操
作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,
有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数
据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

        下一篇博客我们会介绍条件没那么苛刻且更为常用的红黑树

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/471694.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS的综合应用例子(网页制作)

这是html的一些最基本内容的代码&#xff1a; <!DOCTYPE html> <html lang"zh"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <t…

MySQL查询某个数据库中特定表的空间占用大小

如果您也想要查询某个数据库中特定表的空间占用大小&#xff0c;包括数据和索引的大小&#xff0c;那么您可以使用以下SQL查询。这个查询将显示特定表在数据库中的数据大小、索引大小以及总大小。 SELECT table_name AS Table,ROUND(((data_length index_length) / 1024 / 10…

Towards Reasoning in Large Language Models: A Survey

文章目录 题目摘要引言什么是推理?走向大型语言模型中的推理测量大型语言模型中的推理发现与启示反思、讨论和未来方向 为什么要推理?结论题目 大型语言模型中的推理:一项调查 论文地址:https://arxiv.org/abs/2212.10403 项目地址: https://github.com/jeffhj/LM-reason…

进入未来城:第五周游戏指南

欢迎来到 Alpha 第 4 季第五周&#xff01; 走进霓虹闪烁的未来城街道&#xff0c;这是一座科技至上的赛博朋克大都市。鳞次栉比的摩天大楼熠熠生辉&#xff0c;拥挤的街道下则是阴森恐怖的地下世界。在这里&#xff0c;像激光鹰队长这样的超级战士正在巡逻&#xff0c;而 Ago…

斯坦福泡茶机器人DexCap源码解析:涵盖收集数据、处理数据、模型训练三大阶段

前言 因为我司「七月在线」关于dexcap的复现/优化接近尾声了(每月逐步提高复现的效果)&#xff0c;故准备把dexcap的源码也分析下&#xff0c;11月​下旬则分析下iDP3的源码——为队伍「iDP3人形的复现/优化」助力 最开始&#xff0c;dexcap的源码分析属于此文《DexCap——斯…

Python中的HTML

文章目录 一. HTML1. html的定义2. html的作用3. 基本结构4. 常用的html标签5. 列表标签① 无序列表② 有序列表 6. 表格标签7. 表单标签8. 表单提交① 表单属性设置② 表单元素属性设置 一. HTML 1. html的定义 HTML 的全称为&#xff1a;HyperText Mark-up Language, 指的是…

PdServer:调用MidjourneyAPI完成静夜思图文生成

欢迎沟通讨论&#xff0c;WX: cdszsz。公号&#xff1a;AIGC中文站。 今天我们将使用PdServer&#xff0c;通过Qwen大模型完成古诗的解析与prompt的生成&#xff0c;然后调用MidjourneyAPI完成图片的生成。有了文案和图片&#xff0c;我们就可以将其生成为一个古诗讲读视频。从…

论文 | The Capacity for Moral Self-Correction in LargeLanguage Models

概述 论文探讨了大规模语言模型是否具备“道德自我校正”的能力&#xff0c;即在收到相应指令时避免产生有害或偏见输出的能力。研究发现&#xff0c;当模型参数达到一定规模&#xff08;至少22B参数&#xff09;并经过人类反馈强化学习&#xff08;RLHF&#xff09;训练后&…

认证鉴权框架SpringSecurity-1--概念和原理篇

1、基本概念 Spring Security 是一个强大且高度可定制的框架&#xff0c;用于构建安全的 Java 应用程序。它是 Spring 生态系统的一部分&#xff0c;提供了全面的安全解决方案&#xff0c;包括认证、授权、CSRF防护、会话管理等功能。 2、认证、授权和鉴权 &#xff08;1&am…

删库跑路,启动!

起因&#xff1a;这是一个悲伤的故事&#xff0c;在抓logcat时 device待机自动回根目录了&#xff0c;而题主对当前路径的印象还停留在文件夹下&#xff0c;不小心在根目录执行了rm -rf * … 所以&#xff0c;这是个悲伤的故事&#xff0c;东西全没了…device也黑屏了&#xff…

unity单例模式的不同声明(待完善

总结&#xff1a; 这段代码实现了一个泛型单例模式&#xff08;Singleton Pattern&#xff09;&#xff0c;用于确保某个类&#xff08;由泛型参数 T 指定&#xff09;在整个应用程序中只有一个实例&#xff0c;并且在第一次访问时才创建该实例。该模式保证了该实例的全局唯一…

低代码牵手 AI 接口:开启智能化开发新征程

一、低代码与 AI 接口的结合趋势 低代码开发平台近年来在软件开发领域迅速崛起。随着企业数字化转型的需求不断增长&#xff0c;低代码开发平台以其快速构建应用程序的优势&#xff0c;满足了企业对高效开发的需求。例如&#xff0c;启效云低代码平台通过范式化和高颗粒度的可配…

3. Sharding-Jdbc核⼼流 程+多种分⽚策略

1. Sharding-Jdbc 分库分表执⾏核⼼流程 Sharding-JDBC执行流程 1. SQL解析 -> SQL优化 -> SQL路由 -> SQL改写 -> SQL执⾏-> 结果归并 ->返回结果简写为&#xff1a;解析->路由->改写->执⾏->结果归并1.1 SQL解析 1. SQL解析过程分为词法解析…

解读Nature:Larger and more instructable language models become less reliable

目录 Larger and more instructable language models become less reliable 核心描述 核心原理 创新点 举例说明 大模型训练,微调建议 Larger and more instructable language models become less reliable 这篇论文的核心在于对大型语言模型(LLMs)的可靠性进行了深入…

A3超级计算机虚拟机,为大型语言模型LLM和AIGC提供强大算力支持

热门大语言模型项目地址&#xff1a;www.suanjiayun.com/mirrorDetails?id66ac7d478099315577961758 近几个月来&#xff0c;我们目睹了大型语言模型&#xff08;LLMs&#xff09;和生成式人工智能强势闯入我们的视野&#xff0c;显然&#xff0c;这些模型在训练和运行时需要…

跟着尚硅谷学vue2—基础篇4.0

11. 收集表单数据 收集表单数据&#xff1a; 若&#xff1a;<input type"text"/>&#xff0c;则v-model收集的是value值&#xff0c;用户输入的就是value值。 若&#xff1a;<input type"radio"/>&#xff0c;则v-model收集的是value值&…

「人眼视觉不再是视频消费的唯一形式」丨智能编解码和 AI 视频生成专场回顾@RTE2024

你是否想过&#xff0c;未来你看到的电影预告片、广告&#xff0c;甚至新闻报道&#xff0c;都可能完全由 AI 生成&#xff1f; 在人工智能迅猛发展的今天&#xff0c;视频技术正经历着一场前所未有的变革。从智能编解码到虚拟数字人&#xff0c;再到 AI 驱动的视频生成&#…

【LeetCode】每日一题 2024_11_14 统计好节点的数目(图/树的 DFS)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动&#xff01; 题目&#xff1a;统计好节点的数目 代码与解题思路 先读题&#xff1a;题目要求我们找出好节点的数量&#xff0c;什么是好节点&#xff1f;“好节点的所有子节点的数量都是相同的”&#xff0c;拿示例一…

js中typeOf无法区分数组对象

[TOC]&#xff08;js中typeOf无法区分数组对象) 前提&#xff1a;很多时候我们在JS中用typeOf来判断值类型&#xff0c;如&#xff1a;typeOf ‘abc’//string ,typeOf 123 //number; 但当判断对象为数组时返回的仍是’object’ 这时候我们可以使用Object.prototype.toString.c…

ISUP协议视频平台EasyCVR视频设备轨迹回放平台智慧农业视频远程监控管理方案

在当今快速发展的农业领域&#xff0c;智慧农业已成为推动农业现代化、助力乡村全面振兴的新手段和新动能。随着信息技术的持续进步和城市化进程的加快&#xff0c;智慧农业对于监控安全和智能管理的需求日益增长。 视频设备轨迹回放平台EasyCVR作为智慧农业视频远程监控管理方…