DB-GPT系列(四):DB-GPT六大基础应用场景part1

一、基础问答

进入DB-GPT后,再在线对话默认的基础功能就是对话功能。这里我们可以和使用通义千问、文心一言等在线大模型类似的方法, 来和DB-GPT进行对话。

但是值得注意的是,DB-GPT的输出结果是在内置提示词基础之上进行的回答,也就是说在DB-GPT中我们传输给模型任何问题,都会经过提示词模板修改后传输给底层模型。

可以在探索广场中找到Chat Normal功能

二、知识库问答

Chat Knowledge(知识库对话)借助RAG实现私有知识库问答,用户可以自定义传输企业业务说明文档、专家文档或数据字典等信息,并围绕相关问题进行问答,从而辅助用户快速了解企业业务,或辅助进行业务决策等。

知识库问答的操作主要分为以下几个步骤:

  • 创建知识库
  • 上传文档知识
  • 等待文档切片+向量化
  • 开始知识库对话

下面对这几个步骤进行逐一说明

1、创建知识库

应用管理内切换到知识库tab页,点击创建知识库

填写知识库基础配置:

  • 知识库名称:起一个贴切知识库内容的名字
  • 存储类型:有Vector Store、Knowledge Graph、Full Text
  • 领域类型:目前只有Normal
  • 描述:写一下知识库简要的描述

这里的存储类型Vector Store表示向量存储、Knowledge Graph表示知识图谱存储、Full Text表示全文存储。

2、上传文档知识

接着在2 知识库类型中,根据自身的文档类型选择进行文档进行上传。

目前支持的文档类型有:

  • 文本:填写原始文本内容
  • 网址:读取在线URL的内容、
  • 文档:目前支持文档类型有PDF, PowerPoint, Excel, Word, Text, Markdown, Zip, Csv
  • 语雀文档:读取语雀(语雀,为每一个人提供优秀的文档和知识库工具 · 语雀)的在线文档内容

这里以上传本地word文档为例子,上传界面如下:

我们上传的文档其实是上传到DB-GPT运行的服务器上(例如公司服务器),本质上 其实还是“本地运行”,并不会存在数据泄露的风险。具体每个知识库文档地址为: /root/autodltmp/DB-GPT/pilot/data

3、等待文档切片+向量化

接下来回到DB-GPT知识库创建页面,可以继续选择文本切分方式,除非特殊情况,推荐选择默认的自动切分方法,然后点击Process即可。

DB-GPT支持下面四种切分方法:

  • 自动切片
  • chunk size
  • paragraph
  • separator

(1)自动切片

不需要设置任何分片参数

(2)chunk size

通过设置chunk_size、chunk_overlap两个参数来控制切分。

chunk_size:对输入文本序列进行切分的最大长度。

chunk_overlap:相邻两个chunk之间的重叠token数量。为了保证文本语义的连贯性,相邻chunk会有一定的重叠。chunk_overlap控制这个重叠区域的大小。

(3)paragraph

通过设置分隔符来区分自然段

查看文档切分进度

可以查看文档的具体切分结果

4、开始知识库对话

对话会默认载入知识库基本背景,比如当我们输入你好,你擅长什么?时,回答会围绕DBGPT的知识库相关内容进行问答

查看DB-GPT后台的处理情况

DB-GPT实现的私有知识库问答流程远比最热门RAG之一的LangChain-CahtChat复杂,在后续解读DB-GPT项目源码的文章会介绍

三、ChatExcel功能

Chat Excel(Excel对话)可以围绕某个Excel数据文件进行快速分析,允许用户上传数据文件并直接对其进行分析。

在下载的DB-GPT源码目录DB-GPT\docker\examples\excel下,有一个example.xlsx的示例excel文件。

该数据集数据集包含关于各种细分市场、国家、产品和日期的销售交易信息。包括折扣档次、销售单 位、定价、总销售额、成本、利润,以及交易的月份和年份等详细信息,基本情况如下:

上传了文件之后,发现系统会自动创建一段总结分析。

这里其实是在默认提示词模板作用下,自动对数据文件进行的分析。另外返回的结果是英文,也跟系统的默认提示词有关。后续解读DB-GPT项目源码的文章会介绍如何设置并修改这些提示词模板。

接下来,我们可以进一步提问题继续分析。

例如输入分析不同产品在不同国家的销售趋势,找出一些在某些国家销售势头好的产品。

分析结果如下:

在SQL页会看到DB-GPT也会将分析转换为SQL语句。

从SQL结果来看,很好得理解了上面问题的分析意图。

SELECTCountry,Product,SUM(Sales) AS TotalSales
FROMexcel_data
GROUP BYCountry,Product
ORDER BYCountry,TotalSales DESC;

上传完的excel数据文件数据,也保存在服务器的/root/DB-GPT/pilot/data/文件夹内

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/472233.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电子工牌独立双通道定向拾音方案(有视频演示)

现在一些行业的客服人员在面对客户都要求使用电子工牌分别记录客服和顾客的声音,我们利用双麦克风阵列双波束拾音的方案设计了一个电子工牌方案.可以有效分别记录客服和顾客的声音. 方案思路: 我们采用了一个双麦阵列波束拾音的模块A-59,此模块可以利用2个麦克风组成阵列进行双…

【2025最新计算机毕业设计】基于SpringBoot+Vue电脑在线装机指南教程网站【源码+文档】

作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容:🌟Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…

【包教包会】CocosCreator3.x框架——带翻页特效的场景切换

一、效果演示 二、如何获取 1、https://gitee.com/szrpf/TurnPage 2、解压,导入cocos creator(版本3.8.2),可以直接运行Demo演示 三、算法思路 1、单场景 页面预制体 通过loadScene来切换页面,无法实现页面特效。…

帽子矩阵--记录

帽子矩阵(Hat Matrix)并不是由某一位具体的科学家单独发明的,而是逐渐在统计学和线性代数的发展过程中形成的。帽子矩阵的概念最早出现在20世纪初的统计学文献中,尤其是在回归分析的研究中得到了广泛应用。然而,具体是…

opencv kdtree pcl kdtree 效率对比

由于项目中以一个环节需要使用kdtree ,对性能要求比较严苛&#xff0c;所以看看那个kdtree效率高一些。对比了opencv和pcl。 #include <array> #include <deque> #include <fstream> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp…

NodeJS 百度智能云文本转语音(实测)

现在文本转语音的技术已经非常完善了&#xff0c;尽管网络上有许多免费的工具&#xff0c;还是测试了专业的服务&#xff0c;选择了百度的TTS服务。 于是&#xff0c;在百度智能云注册和开通了文本转语音的服务&#xff0c;尝试使用NodeJS 实现文本转语音服务。但是百度的文档实…

关于在Reverse函数中不能使用L=s而是*L=*s的原因分析

完整代码地址&#xff1a; https://blog.csdn.net/2301_76819732/article/details/143807340?spm1001.2014.3001.5502 如果使用Ls; 的话&#xff0c;当输出结果时&#xff0c;会发现内容为空。 我感到很奇怪&#xff0c;按照我的设想&#xff0c;Ls;会把s指向的地址赋给L。 但…

麒麟系统下docker搭建jenkins

首先我们需要创建宿主机挂载路径&#xff0c;我这里放在本地的/data/henkins/home,然后赋予权限&#xff0c;命令如下&#xff1a; mkdir -p /data/jenkins/home chown -R 1000:1000 /data/jenkins/home chmod -R 777 /data/jenkins/homedocker run -d --restart …

Docker部署Kafka SASL_SSL认证,并集成到Spring Boot

1&#xff0c;创建证书和密钥 需要openssl环境&#xff0c;如果是Window下&#xff0c;下载openssl Win32/Win64 OpenSSL Installer for Windows - Shining Light Productions 还需要keytool环境&#xff0c;此环境是在jdk环境下 本案例所使用的账号密码均为&#xff1a; ka…

CSS基础知识04

文本溢出通常是指在限定的空间内不能容纳所输入的文字&#xff0c;导致文字超出了容器的边界 一、文本溢出 1.1.css属性处理 所用到的属性 属性属性值overflowvisible&#xff1a;默认值&#xff0c;内容不会被修剪&#xff0c;会呈现在元素框之外。hidden&#xff1a;内容会…

【从零开始的LeetCode-算法】3239. 最少翻转次数使二进制矩阵回文 I

给你一个 m x n 的二进制矩阵 grid 。 如果矩阵中一行或者一列从前往后与从后往前读是一样的&#xff0c;那么我们称这一行或者这一列是 回文 的。 你可以将 grid 中任意格子的值 翻转 &#xff0c;也就是将格子里的值从 0 变成 1 &#xff0c;或者从 1 变成 0 。 请你返回 …

浅层神经网络

浅层神经网络 浅层神经网络通常指包含一个隐藏层的神经网络。这个网络由输入层、隐藏层和输出层构成&#xff1a; 输入层&#xff1a;输入层负责接收网络的输入特征&#xff0c;通常表示为列向量 x T [ x 1 , x 2 , x 3 ] x^T [x_1, x_2, x_3] xT[x1​,x2​,x3​]&#xff…

web与网络编程

使用HTTP协议访问Web 通过发送请求获取服务器资源的Web浏览器等&#xff0c;被成为客户端(client)。 Web使用一种名为HTTP(超文本传输协议)的协议作为规范&#xff0c;完成从客户端到服务器端等一系列运作流程。 可以说&#xff0c;Web时建立在HTTP协议上通信的。 网络基础T…

HARCT 2025 分论坛4:智能系统传感、传感器开发和数据融合中的智能数据分析

机电液一体化与先进机器人控制技术国际会议&#xff08;HARCT 2025&#xff09;将于2025年1月3日-6日在中国广西桂林召开。本届会议围绕“机电液一体化”“机器人”“控制技术”等最新研究成果&#xff0c;邀请海内外在这一领域贡献卓著的专家学者做精彩致辞和报告。 会议期间…

Vue3中一级导航栏的吸顶导航交互以及Pinia优化重复请求

一、前言 在日常的网站中&#xff0c;当鼠标滚轮往页面的底部滑动时&#xff0c;会出现顶部导航栏的隐藏&#xff0c;而出现新的导航栏显示&#xff0c;这就是一级导航栏的吸顶导航交互。本文当实现改模块功能的实现。 二、示例图 参考黑马程序员小兔仙儿PC端项目&#xff1a;…

计算机网络HTTP——针对实习面试

目录 计算机网络HTTP什么是HTTP&#xff1f;HTTP和HTTPS有什么区别&#xff1f;分别说明HTTP/1.0、HTTP/2.0、HTTP/3.0请说明访问网页的全过程请说明HTTP常见的状态码Cookie和Session有什么区别&#xff1f;HTTP请求方式有哪些&#xff1f;请解释GET和POST的区别&#xff1f;HT…

Win11 终端执行 python xxx.py 没反应

在 Win11 上写了一段 Python 代码来分析日志文件&#xff0c; 发现执行没反应。是在 VSCode 里的终端中执行的 python log_stats.py, 是 PowerShell&#xff1b; 也尝试了 cmd&#xff0c; 情况一样。 一开始怀疑代码写错&#xff0c;直到故意在代码里加打印&#xff0c;发现没…

自由学习记录(22)

最后再总结一下吧 虽然过程里很多细节也许我没有去管&#xff0c;毕竟现在就已经存在更好的解决方案了 但大致思想是了解了 A星是一种网格上的遍历方式&#xff0c;为了找到一个目标点和起点之间的要经过的最短节点组 里面更像是动态规划 每一次的遍历&#xff0c;都是当前…

如何保证MySQL与Redis缓存的数据一致性?

文章目录 一、引言二、场景来源三、高并发解决方案1. 先更新缓存&#xff0c;再更新数据库2. 先更新数据库&#xff0c;再更新缓存3. 先删除缓存&#xff0c;再更新数据库4. 先更新数据库&#xff0c;再删除缓存小结 四、拓展方案1. 分布式锁与分布式事务2. 消息队列3. 监听bin…

java-Day06 内部类 Lambda表达式 API

内部类 内部类:就是在一个类中定义一个类 格式例: public class Outer { public class Inner { } } 内部类分类 1.成员内部类(了解) 创建成员内部类 外部类.内部类 对象名new外部类().new内部类() 2.静态内部类(了解) 3.局部内部类(了解) 4.匿名内部类…