PyTorch——从入门到精通:PyTorch基础知识(张量)【PyTorch系统学习】

什么是张量(Tensor)

      ​ 张量在数学中是一个代数对象,描述了与矢量空间相关的代数对象集之间的多重线性映射。张量是向量和矩阵概念的推广,可以理解为多维数组。作为数学中的一个基本概念,张量有着多种类型,包括但不限于标量、矢量、矩阵以及矢量空间之间的多重线性映射等。张量的不同类型对应于不同的阶数,其中标量是0阶张量,矢量是1阶张量,矩阵是2阶张量,而更高阶的张量则可以表示更复杂的关系和结构。

张量维度代表含义

0维张量

代表的是标量(数字)

1维张量

代表的是向量

2维张量

代表的是矩阵

3维张量

时间序列数据 股价 文本数据 单张彩色图片(RGB)

        张量在物理学、工程学、计算机科学等多个领域中都有广泛的应用,特别是在机器学习和深度学习中,张量是一个核心概念,被广泛用于表示和操作图像、文本和时间序列等复杂数据结构。深度学习框架如 TensorFlow 和 PyTorch 就是以张量为核心数据结构,提供了丰富的张量操作函数,使得模型训练和推理变得更加高效和便捷。

PyTorch张量基础操作

        由于我们的代码是建立在PyTorch的基础上的,因此首先需要导入torch包,这也是我们后续代码的基础。

import torch

创建张量

        1.标量:简单的一个数字,只有大小,没有方向的量.

# 根据现有数字创建标量,并进行简单的运算操作
x = torch.tensor(3.0)
y = torch.tensor(2.0)x + y, x - y, x * y, x / y, x**y

        2.向量:既有大小,又有方向的量。

# 从列表创建张量
tensor_from_list = torch.tensor([1, 2, 3, 4])# 使用arange生成一个从起始值到结束值(不包括结束值)的等差数列张量,1为其步长
tensor_arange = torch.arange(0, 10, 1)# 使用linspace创建张量,同样需要开始值和结束值参数,以及生成的数值个数
tensor_linspace = torch.linspace(0, 100, steps=5)

        3.矩阵:由行和列组成的数组。

# 特定数字的张量,全零张量
zeros_tensor = torch.zeros((2, 3))  # 2行3列# 全一张量
ones_tensor = torch.ones((3, 3))  # 3行3列# 随机数字张量
random_tensor = torch.rand((4, 3))  # 4行3列随机数# 单位矩阵
identity_tensor = torch.eye(3)  # 3x3单位矩阵# 创建与a相同形状的全零张量
a = torch.tensor([[1, 2], [3, 4]])
zeros_like_a = torch.zeros_like(a)

        4.高阶张量

# 直接使用数据创建
tensor = torch.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],[[10, 11, 12], [13, 14, 15], [16, 17, 18]],[[19, 20, 21], [22, 23, 24], [25, 26, 27]]
])  # 创建一个3x3x3的高阶张量# 使用arange、linespace、zeros创建,如:
tensor_arange=tensor.arange((1,2,3,3)) # 1x2x3x3的高阶张量

张量运算

        元素级运算

        加、减、乘、除、幂运算

a = torch.tensor([[1, 2], [3, 4]])
b = torch.tensor([[5, 6], [7, 8]])a + b, a - b, a * b, a / b, a ** b, torch.pow(a, 2)  # 加、减、乘、除、指数、每个元素平方

        广播机制

        广播机制可以自动扩展小张量与大张量进行运算,这种机制的工作方式如下:1.通过适当复制元素来扩展一个或两个数组,以便在转换之后,两个张量具有相同的形状;2.对生成的数组执行按元素操作。

a = torch.tensor([[1], [2], [3]]) # 形状(1,3)
b = torch.tensor([10, 20])  # 形状(2,2)a + b  # 相加后的形状为(2,3)

        线性代数运算

# 矩阵乘法
a = torch.tensor([[1, 2], [3, 4]])
b = torch.tensor([[5, 6], [7, 8]])
matmul_result = torch.matmul(a, b)
print("矩阵乘法结果:", matmul_result)# 转置
transpose_result = a.T
print("转置结果:", transpose_result)# 逆矩阵
square_tensor = torch.tensor([[4.0, 7.0], [2.0, 6.0]])
inv_tensor = torch.inverse(square_tensor)
print("逆矩阵结果:", inv_tensor)

        形状操作

# 对现有的张量重塑形状,这种方式也能够用于创建高阶张量
reshaped_tensor = tensor.arange(0,10,1)reshape((2, 5))  # 将向量调整为2x5的矩阵# 将向量展开为一维
a=tensor.zeros((2,2,3))
flattened_tensor = a.flatten()  # 展开为一维# 张量的拼接,这种方式也能够用于创建高阶张量
a = torch.tensor([[1, 2], [3, 4]])
b = torch.tensor([[5, 6]])
concatenated_tensor = torch.cat([a, b], dim=0)  # 沿第0维拼接
print("拼接结果:", concatenated_tensor)# 拆分张量
split_tensors = torch.chunk(a, 2, dim=0)  # 沿第0维拆分为2部分
print("拆分结果:", split_tensors)# 增加维度
a = torch.tensor([1, 2, 3])
expanded_tensor = a.unsqueeze(0)  # 在第0维增加维度
print("增加维度结果:", expanded_tensor)# 减少维度
a = torch.tensor([[[1, 2], [3, 4]]])
squeezed_tensor = a.squeeze()  # 删除维度为1的轴
print("减少维度结果:", squeezed_tensor)

        张量的统计运算

# 求和、求积
a = torch.tensor([[1, 2], [3, 4]])
sum_result = torch.sum(a)  # 所有元素求和
prod_result = torch.prod(a)  # 所有元素求积
print("求和结果:", sum_result)
print("求积结果:", prod_result)# 最大值、最小值
max_result = torch.max(a)  # 最大值
min_result = torch.min(a)  # 最小值
print("最大值:", max_result)
print("最小值:", min_result)# 按维度聚合
sum_along_dim = torch.sum(a, dim=0)  # 按列求和
print("按维度求和结果:", sum_along_dim)

感谢阅读,希望对你有所帮助~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/473839.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024-11-17 -MATLAB三维绘图简单实例

1. x -1:0.05:1; y x; [X, Y] meshgrid(x, y); f (X, Y) (sin(pi * X) .* sin(pi * Y)) .^ 2.*sin(2.*X2.*Y); mesh(X, Y, f(X, Y)); % 调用函数f并传递X和Y xlabel(X-axis); ylabel(Y-axis); zlabel(Z-axis); title(Surface Plot of (sin(pi * X) .* sin(pi * Y)) .^ 2.*…

WebAssembly在桌面级应用开发中的探索与实践

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 WebAssembly在桌面级应用开发中的探索与实践 WebAssembly在桌面级应用开发中的探索与实践 WebAssembly在桌面级应用开发中的探索…

第二十一周学习周报

目录 摘要Abstract1. LSTM原理2. LSTM反向传播的数学推导3. LSTM模型训练实战总结 摘要 本周的学习内容是对LSTM相关内容的复习,LSTM被设计用来解决标准RNN在处理长序列数据时遇到的梯度消失和梯度爆炸问题。LSTM通过引入门控机制来控制信息的流动,从而…

《Spring 基础之 IoC 与 DI 入门指南》

一、IoC 与 DI 概念引入 Spring 的 IoC(控制反转)和 DI(依赖注入)在 Java 开发中扮演着至关重要的角色,是提升代码质量和可维护性的关键技术。 (一)IoC 的含义及作用 IoC 全称为 Inversion of…

Vulnhub靶场案例渗透[9]- HackableIII

文章目录 一、靶场搭建1. 靶场描述2. 下载靶机环境3. 靶场搭建 二、渗透靶场1. 确定靶机IP2. 探测靶场开放端口及对应服务3. 扫描网络目录结构4. 敏感数据获取5. 获取shell6. 提权6.1 敏感信息获取6.2 lxd提权 一、靶场搭建 1. 靶场描述 Focus on general concepts about CTF…

抖音热门素材去哪找?优质抖音视频素材网站推荐!

是不是和我一样,刷抖音刷到停不下来?越来越多的朋友希望在抖音上创作出爆款视频,但苦于没有好素材。今天就来推荐几个超级实用的抖音视频素材网站,让你的视频内容立刻变得高大上!这篇满是干货,直接上重点&a…

如何轻松导出所有 WordPress URL 为纯文本格式

作为一名多年的 WordPress 使用者,我深知管理一个网站的复杂性。从迁移网站、设置重定向到整理内容结构,每一步都需要精细处理。而拥有所有 URL 的清单,不仅能让这些工作变得更加简单,还能为后续的管理提供极大的便利。其实&#…

vue项目使用eslint+prettier管理项目格式化

代码格式化、规范化说明 使用eslintprettier进行格式化,vscode中需要安装插件ESLint、Prettier - Code formatter,且格式化程序选择为后者(vue文件、js文件要分别设置) 对于eslint规则,在格式化时不会全部自动调整&…

Ubuntu 18.04 配置sources.list源文件(无法安全地用该源进行更新,所以默认禁用该源)

如果你 sudo apt update 时出现诸如 无法安全地用该源进行更新,所以默认禁用该源 的错误,那就换换源吧,链接: https://mirror.tuna.tsinghua.edu.cn/help/ubuntu/ 注意版本: 修改源文件: sudo nano /etc…

5. langgraph中的react agent使用 (从零构建一个react agent)

1. 定义 Agent 状态 首先,我们需要定义 Agent 的状态,这包括 Agent 所持有的消息。 from typing import (Annotated,Sequence,TypedDict, ) from langchain_core.messages import BaseMessage from langgraph.graph.message import add_messagesclass …

【网络】什么是交换机?switch

交换机(Switch)意为“开关”,是一种用于电(光)信号转发的网络设备。以下是关于交换机的详细解释: 一、交换机的基本定义 功能:交换机能为接入交换机的任意两个网络节点提供独享的电信号通路&am…

【AlphaFold3】开源本地的安装及使用

文章目录 安装安装DockerInstalling Docker on Host启用Rootless Docker 安装 GPU 支持安装 NVIDIA 驱动程序安装 NVIDIA 对 Docker 的支持 获取 AlphaFold 3 源代码获取基因数据库获取模型参数构建将运行 AlphaFold 3 的 Docker 容器 参考 AlphaFold3: https://github.com/goo…

【免越狱】iOS砸壳 可下载AppStore任意版本 旧版本IPA下载

软件介绍 下载iOS旧版应用,简化繁琐的抓包流程。 一键生成去更新IPA(手机安装后,去除App Store的更新检测)。 软件界面 支持系统 Windows 10/Windows 8/Windows 7(由于使用了Fiddler库,因此需要.Net环境…

shell 100例

1、每天写一个文件 (题目要求) 请按照这样的日期格式(xxxx-xx-xx每日生成一个文件 例如生成的文件为2017-12-20.log,并且把磁盘的使用情况写到到这个文件中不用考虑cron,仅仅写脚本即可 [核心要点] date命令用法 df命令 知识补充&#xff1…

Acrobat Pro DC 2023(pdf免费转化word)

所在位置 通过网盘分享的文件:Acrobat Pro DC 2023(64bit).tar 链接: https://pan.baidu.com/s/1_m8TT1rHTtp5YnU8F0QGXQ 提取码: 1234 --来自百度网盘超级会员v4的分享 安装流程 打开安装所在位置 进入安装程序 找到安装程序 进入后点击自定义安装,这里…

linux之调度管理(5)-实时调度器

一、概述 在Linux内核中,实时进程总是比普通进程的优先级要高,实时进程的调度是由Real Time Scheduler(RT调度器)来管理,而普通进程由CFS调度器来管理。 实时进程支持的调度策略为:SCHED_FIFO和SCHED_RR。 SCHED_FIFO&#xff…

在arm64架构下, Ubuntu 18.04.5 LTS 用命令安装和卸载qt4、qt5

问题:需要在 arm64下安装Qt,QT源码编译失败以后,选择在线安装! 最后安装的版本是Qt5.9.5 和QtCreator 4.5.2 。 一、ubuntu安装qt4的命令(亲测有效): sudo add-apt-repository ppa:rock-core/qt4 sudo apt updat…

Qt 之 qwt和QCustomplot对比

QWT(Qt Widgets for Technical Applications)和 QCustomPlot 都是用于在 Qt 应用程序中绘制图形和图表的第三方库。它们各有优缺点,适用于不同的场景。 以下是 QWT 和 QCustomPlot 的对比分析: 1. 功能丰富度 QWT 功能丰富&a…

实用教程:如何无损修改MP4视频时长

如何在UltraEdit中搜索MP4文件中的“mvhd”关键字 引言 在视频编辑和分析领域,有时我们需要深入到视频文件的底层结构中去。UltraEdit(UE)和UEStudio作为强大的文本编辑器,允许我们以十六进制模式打开和搜索MP4文件。本文将指导…

使用nossl模式连接MySQL数据库详解

使用nossl模式连接MySQL数据库详解 摘要一、引言二、nossl模式概述2.1 SSL与nossl模式的区别2.2 选择nossl模式的场景三、在nossl模式下连接MySQL数据库3.1 准备工作3.2 C++代码示例3.3 代码详解3.3.1 初始化MySQL连接对象3.3.2 连接到MySQL数据库3.3.3 执行查询操作3.3.4 处理…