项目部署问题bug记录(长期更新)

一、编译相关

1.submodules/simple-knn/simple_knn.cu(90): error: identifier "FLT_MAX" is undefined
          me.minn = { FLT_MAX, FLT_MAX, FLT_MAX };

部署photoreg工程,在编译simple_knn的时候,报错:

(photoreg) lee@lee-System-Product-Name:~/project/PhotoRegCodes$ pip install submodules/simple-knn
Processing ./submodules/simple-knnPreparing metadata (setup.py) ... done
Building wheels for collected packages: simple_knnBuilding wheel for simple_knn (setup.py) ... errorerror: subprocess-exited-with-error× python setup.py bdist_wheel did not run successfully.│ exit code: 1╰─> [113 lines of output]running bdist_wheelrunning buildrunning build_ext/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/utils/cpp_extension.py:414: UserWarning: The detected CUDA version (12.5) has a minor version mismatch with the version that was used to compile PyTorch (12.4). Most likely this shouldn't be a problem.warnings.warn(CUDA_MISMATCH_WARN.format(cuda_str_version, torch.version.cuda))/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/utils/cpp_extension.py:424: UserWarning: There are no g++ version bounds defined for CUDA version 12.5warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}')building 'simple_knn._C' extension/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/utils/cpp_extension.py:1965: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation.If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST'].warnings.warn(Emitting ninja build file /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/build.ninja...Compiling objects...Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)[1/3] /usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/simple_knn.o.d -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/TH -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/lee/miniconda3/envs/photoreg/include/python3.8 -c -c /home/lee/project/PhotoRegCodes/submodules/simple-knn/simple_knn.cu -o /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/simple_knn.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_89,code=compute_89 -gencode=arch=compute_89,code=sm_89 -std=c++17FAILED: /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/simple_knn.o/usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/simple_knn.o.d -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/TH -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/lee/miniconda3/envs/photoreg/include/python3.8 -c -c /home/lee/project/PhotoRegCodes/submodules/simple-knn/simple_knn.cu -o /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/simple_knn.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_89,code=compute_89 -gencode=arch=compute_89,code=sm_89 -std=c++17/home/lee/project/PhotoRegCodes/submodules/simple-knn/simple_knn.cu:23: warning: "__CUDACC__" redefined23 | #define __CUDACC__|<command-line>: note: this is the location of the previous definition/home/lee/project/PhotoRegCodes/submodules/simple-knn/simple_knn.cu:23: warning: "__CUDACC__" redefined23 | #define __CUDACC__|<command-line>: note: this is the location of the previous definition/home/lee/project/PhotoRegCodes/submodules/simple-knn/simple_knn.cu(90): error: identifier "FLT_MAX" is undefinedme.minn = { FLT_MAX, FLT_MAX, FLT_MAX };^/home/lee/project/PhotoRegCodes/submodules/simple-knn/simple_knn.cu(154): error: identifier "FLT_MAX" is undefinedfloat best[3] = { FLT_MAX, FLT_MAX, FLT_MAX };^2 errors detected in the compilation of "/home/lee/project/PhotoRegCodes/submodules/simple-knn/simple_knn.cu".[2/3] c++ -MMD -MF /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/ext.o.d -pthread -B /home/lee/miniconda3/envs/photoreg/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/lee/miniconda3/envs/photoreg/include -fPIC -O2 -isystem /home/lee/miniconda3/envs/photoreg/include -fPIC -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/TH -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/lee/miniconda3/envs/photoreg/include/python3.8 -c -c /home/lee/project/PhotoRegCodes/submodules/simple-knn/ext.cpp -o /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/ext.o -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17[3/3] /usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/spatial.o.d -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/TH -I/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/lee/miniconda3/envs/photoreg/include/python3.8 -c -c /home/lee/project/PhotoRegCodes/submodules/simple-knn/spatial.cu -o /home/lee/project/PhotoRegCodes/submodules/simple-knn/build/temp.linux-x86_64-cpython-38/spatial.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_89,code=compute_89 -gencode=arch=compute_89,code=sm_89 -std=c++17/home/lee/project/PhotoRegCodes/submodules/simple-knn/spatial.cu: In function ‘at::Tensor distCUDA2(const at::Tensor&)’:/home/lee/project/PhotoRegCodes/submodules/simple-knn/spatial.cu:23:64: warning: ‘T* at::Tensor::data() const [with T = float]’ is deprecated: Tensor.data<T>() is deprecated. Please use Tensor.data_ptr<T>() instead. [-Wdeprecated-declarations]23 |   SimpleKNN::knn(P, (float3*)points.contiguous().data<float>(), means.contiguous().data<float>());|                             ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/ATen/core/TensorBody.h:247:1: note: declared here247 |   T * data() const {| ^ ~~/home/lee/project/PhotoRegCodes/submodules/simple-knn/spatial.cu:23:102: warning: ‘T* at::Tensor::data() const [with T = float]’ is deprecated: Tensor.data<T>() is deprecated. Please use Tensor.data_ptr<T>() instead. [-Wdeprecated-declarations]23 |   SimpleKNN::knn(P, (float3*)points.contiguous().data<float>(), means.contiguous().data<float>());|                                                                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   ^/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/include/ATen/core/TensorBody.h:247:1: note: declared here247 |   T * data() const {| ^ ~~ninja: build stopped: subcommand failed.Traceback (most recent call last):File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 2105, in _run_ninja_buildsubprocess.run(File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/subprocess.py", line 516, in runraise CalledProcessError(retcode, process.args,subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1.The above exception was the direct cause of the following exception:Traceback (most recent call last):File "<string>", line 2, in <module>File "<pip-setuptools-caller>", line 34, in <module>File "/home/lee/project/PhotoRegCodes/submodules/simple-knn/setup.py", line 21, in <module>setup(File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/__init__.py", line 117, in setupreturn distutils.core.setup(**attrs)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 183, in setupreturn run_commands(dist)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 199, in run_commandsdist.run_commands()File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 954, in run_commandsself.run_command(cmd)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_commandsuper().run_command(command)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_commandcmd_obj.run()File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/command/bdist_wheel.py", line 410, in runself.run_command("build")File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_commandself.distribution.run_command(command)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_commandsuper().run_command(command)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_commandcmd_obj.run()File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/command/build.py", line 135, in runself.run_command(cmd_name)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_commandself.distribution.run_command(command)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_commandsuper().run_command(command)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_commandcmd_obj.run()File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 98, in run_build_ext.run(self)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 359, in runself.build_extensions()File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 866, in build_extensionsbuild_ext.build_extensions(self)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 476, in build_extensionsself._build_extensions_serial()File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 502, in _build_extensions_serialself.build_extension(ext)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 263, in build_extension_build_ext.build_extension(self, ext)File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 557, in build_extensionobjects = self.compiler.compile(File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 679, in unix_wrap_ninja_compile_write_ninja_file_and_compile_objects(File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 1785, in _write_ninja_file_and_compile_objects_run_ninja_build(File "/home/lee/miniconda3/envs/photoreg/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 2121, in _run_ninja_buildraise RuntimeError(message) from eRuntimeError: Error compiling objects for extension[end of output]note: This error originates from a subprocess, and is likely not a problem with pip.ERROR: Failed building wheel for simple_knnRunning setup.py clean for simple_knn
Failed to build simple_knn
ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects (simple_knn)

根据error信息,simple_knn.cu第90行me.minn = { FLT_MAX, FLT_MAX, FLT_MAX }中的"FLT_MAX" 变量没有定义,所以找到这个文件打开然后在前面加上一行include的代码引入即可:最后重新pip install simple-knn即可完成编译安装

二、python第三方库与conda

1.InvalidSpec: The package "nvidia/linux-64::cuda-compiler==12.6.2=0" is not available for the specified platform

输入photoreg安装环境的命令,但是报错

(photoreg) lee@lee-System-Product-Name:~/project/PhotoRegCodes$ conda install pytorch torchvision torchaudio cuda-toolkit=11.8 -c pytorch -c nvidia
Channels:- pytorch- nvidia- conda-forge- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free- defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: failedInvalidSpec: The package "nvidia/linux-64::cuda-compiler==12.6.2=0" is not available for the specified platform

上面这个命令在试图安装cuda工具包以及对应的pytorch,其实因为系统里面已经安装了全局的cuda包,没有必要再重复安装某些包,比如cuda编译器等。

(1)查看相关的pytorch版本以及与cuda的对应关系

(photoreg) lee@lee-System-Product-Name:~/project/PhotoRegCodes$ conda search pytorch -c pytorch
Loading channels: done(节选)
# Name                       Version           Build  Channel             
pytorch                        2.3.0 cpu_generic_py310h0ab6cb9_0  conda-forge         
pytorch                        2.3.0 cpu_generic_py310ha4c588e_1  conda-forge         
pytorch                        2.3.0 cpu_generic_py311h255d53b_0  conda-forge         
pytorch                        2.3.0 cpu_generic_py311h8ca351a_1  conda-forge         
pytorch                        2.3.0 cpu_generic_py312h2f1fc2b_1  conda-forge         
pytorch                        2.3.0 cpu_generic_py312hab8db8b_0  conda-forge         
pytorch                        2.3.0 cpu_generic_py38h1fa1760_1  conda-forge         
pytorch                        2.3.0 cpu_generic_py38hbe06502_0  conda-forge         
pytorch                        2.3.0 cpu_generic_py39h87eea44_0  conda-forge         
pytorch                        2.3.0 cpu_generic_py39he75b87c_1  conda-forge         
pytorch                        2.3.0 cpu_mkl_py310h75865b9_101  conda-forge         
pytorch                        2.3.0 cpu_mkl_py310hcb3bde6_100  conda-forge         
pytorch                        2.3.0 cpu_mkl_py311h9835ca6_100  conda-forge         
pytorch                        2.3.0 cpu_mkl_py311hcb16b95_101  conda-forge         
pytorch                        2.3.0 cpu_mkl_py312h3b258cc_101  conda-forge         
pytorch                        2.3.0 cpu_mkl_py312he7b903e_100  conda-forge         
pytorch                        2.3.0 cpu_mkl_py38h1c8c993_100  conda-forge         
pytorch                        2.3.0 cpu_mkl_py38h51400c9_101  conda-forge         
pytorch                        2.3.0 cpu_mkl_py39h85c4de8_101  conda-forge         
pytorch                        2.3.0 cpu_mkl_py39hb6713ec_100  conda-forge         
pytorch                        2.3.0 cpu_py310h08bb5f6_1  pkgs/main           
pytorch                        2.3.0 cpu_py310h1ce4368_1  pkgs/main           
pytorch                        2.3.0 cpu_py310h2a1f63a_0  pkgs/main           
pytorch                        2.3.0 cpu_py310hcb105a3_0  pkgs/main           
pytorch                        2.3.0 cpu_py311h0178f48_1  pkgs/main           
pytorch                        2.3.0 cpu_py311h6fe12db_1  pkgs/main           
pytorch                        2.3.0 cpu_py311h991c31c_0  pkgs/main           
pytorch                        2.3.0 cpu_py311ha0631a7_0  pkgs/main           
pytorch                        2.3.0 cpu_py312h1f09096_0  pkgs/main           
pytorch                        2.3.0 cpu_py312h544eda6_0  pkgs/main           
pytorch                        2.3.0 cpu_py312h5a90aa3_1  pkgs/main           
pytorch                        2.3.0 cpu_py312hde650b8_1  pkgs/main           
pytorch                        2.3.0 cpu_py38h08bb5f6_1  pkgs/main           
pytorch                        2.3.0 cpu_py38h1ce4368_1  pkgs/main           
pytorch                        2.3.0 cpu_py38h2a1f63a_0  pkgs/main           
pytorch                        2.3.0 cpu_py38hcb105a3_0  pkgs/main           
pytorch                        2.3.0 cpu_py39h08bb5f6_1  pkgs/main           
pytorch                        2.3.0 cpu_py39h1ce4368_1  pkgs/main           
pytorch                        2.3.0 cpu_py39h2a1f63a_0  pkgs/main           
pytorch                        2.3.0 cpu_py39hcb105a3_0  pkgs/main           
pytorch                        2.3.0 cuda118_py310h6f85f1b_300  conda-forge         
pytorch                        2.3.0 cuda118_py310h954aa82_301  conda-forge         
pytorch                        2.3.0 cuda118_py311h4ee7bbc_301  conda-forge         
pytorch                        2.3.0 cuda118_py311h6c9cb27_300  conda-forge         
pytorch                        2.3.0 cuda118_py312h3690e1b_301  conda-forge         
pytorch                        2.3.0 cuda118_py312h4faf3bd_300  conda-forge         
pytorch                        2.3.0 cuda118_py38h25d1429_300  conda-forge         
pytorch                        2.3.0 cuda118_py38h32d93a2_301  conda-forge         
pytorch                        2.3.0 cuda118_py39hbf661d7_301  conda-forge         
pytorch                        2.3.0 cuda118_py39hd44be3b_300  conda-forge         
pytorch                        2.3.0 cuda120_py310h2c91c31_301  conda-forge         
pytorch                        2.3.0 cuda120_py310h7891b24_300  conda-forge         
pytorch                        2.3.0 cuda120_py311h2667f23_300  conda-forge         
pytorch                        2.3.0 cuda120_py311hf6aebf0_301  conda-forge         
pytorch                        2.3.0 cuda120_py312h26b3cf7_301  conda-forge         
pytorch                        2.3.0 cuda120_py312hf9a1e0a_300  conda-forge         
pytorch                        2.3.0 cuda120_py38hc4689d7_301  conda-forge         
pytorch                        2.3.0 cuda120_py38heb61fd4_300  conda-forge         
pytorch                        2.3.0 cuda120_py39h17b67e0_301  conda-forge         
pytorch                        2.3.0 cuda120_py39h365aa7c_300  conda-forge         
pytorch                        2.3.0 gpu_cuda118py310h15c2a99_100  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py310h7338b40_100  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py310h796af20_101  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py310hb74dfbf_101  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py311h3118142_101  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py311h3911fe7_101  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py311h6b76543_100  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py311hd2d20a8_100  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py38h15c2a99_100  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py38h7338b40_100  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py38h796af20_101  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py38hb74dfbf_101  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py39h15c2a99_100  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py39h7338b40_100  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py39h796af20_101  pkgs/main           
pytorch                        2.3.0 gpu_cuda118py39hb74dfbf_101  pkgs/main           
pytorch                        2.3.0    py3.10_cpu_0  pytorch             
pytorch                        2.3.0 py3.10_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.0 py3.10_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.3.0    py3.11_cpu_0  pytorch             
pytorch                        2.3.0 py3.11_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.0 py3.11_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.3.0    py3.12_cpu_0  pytorch             
pytorch                        2.3.0 py3.12_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.0 py3.12_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.3.0     py3.8_cpu_0  pytorch             
pytorch                        2.3.0 py3.8_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.0 py3.8_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.3.0     py3.9_cpu_0  pytorch             
pytorch                        2.3.0 py3.9_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.0 py3.9_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.3.1 cpu_generic_py310ha4c588e_0  conda-forge         
pytorch                        2.3.1 cpu_generic_py311h8ca351a_0  conda-forge         
pytorch                        2.3.1 cpu_generic_py312h2f1fc2b_0  conda-forge         
pytorch                        2.3.1 cpu_generic_py38h1fa1760_0  conda-forge         
pytorch                        2.3.1 cpu_generic_py39he75b87c_0  conda-forge         
pytorch                        2.3.1 cpu_mkl_py310h75865b9_100  conda-forge         
pytorch                        2.3.1 cpu_mkl_py311hcb16b95_100  conda-forge         
pytorch                        2.3.1 cpu_mkl_py312h3b258cc_100  conda-forge         
pytorch                        2.3.1 cpu_mkl_py38h51400c9_100  conda-forge         
pytorch                        2.3.1 cpu_mkl_py39h85c4de8_100  conda-forge         
pytorch                        2.3.1 cuda118_py310he8d5cbe_300  conda-forge         
pytorch                        2.3.1 cuda118_py311h0047a46_300  conda-forge         
pytorch                        2.3.1 cuda118_py312h409cda2_300  conda-forge         
pytorch                        2.3.1 cuda118_py38h63640cd_300  conda-forge         
pytorch                        2.3.1 cuda118_py39hd3e083d_300  conda-forge         
pytorch                        2.3.1 cuda120_py310h2c91c31_300  conda-forge         
pytorch                        2.3.1 cuda120_py311hf6aebf0_300  conda-forge         
pytorch                        2.3.1 cuda120_py312h26b3cf7_300  conda-forge         
pytorch                        2.3.1 cuda120_py38hc4689d7_300  conda-forge         
pytorch                        2.3.1 cuda120_py39h17b67e0_300  conda-forge         
pytorch                        2.3.1    py3.10_cpu_0  pytorch             
pytorch                        2.3.1 py3.10_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.1 py3.10_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.3.1    py3.11_cpu_0  pytorch             
pytorch                        2.3.1 py3.11_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.1 py3.11_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.3.1    py3.12_cpu_0  pytorch             
pytorch                        2.3.1 py3.12_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.1 py3.12_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.3.1     py3.8_cpu_0  pytorch             
pytorch                        2.3.1 py3.8_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.1 py3.8_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.3.1     py3.9_cpu_0  pytorch             
pytorch                        2.3.1 py3.9_cuda11.8_cudnn8.7.0_0  pytorch             
pytorch                        2.3.1 py3.9_cuda12.1_cudnn8.9.2_0  pytorch             
pytorch                        2.4.0 cpu_generic_py310h6ad04bf_1  conda-forge         
pytorch                        2.4.0 cpu_generic_py310ha4c588e_0  conda-forge         
pytorch                        2.4.0 cpu_generic_py311h7a8ff39_1  conda-forge         
pytorch                        2.4.0 cpu_generic_py311h8ca351a_0  conda-forge         
pytorch                        2.4.0 cpu_generic_py312h1576ffb_1  conda-forge         
pytorch                        2.4.0 cpu_generic_py312h2f1fc2b_0  conda-forge         
pytorch                        2.4.0 cpu_generic_py38h1fa1760_0  conda-forge         
pytorch                        2.4.0 cpu_generic_py38hbd07d99_1  conda-forge         
pytorch                        2.4.0 cpu_generic_py39h7552c89_1  conda-forge         
pytorch                        2.4.0 cpu_generic_py39he75b87c_0  conda-forge         
pytorch                        2.4.0 cpu_mkl_py310h0b5cf2a_101  conda-forge         
pytorch                        2.4.0 cpu_mkl_py310h75865b9_100  conda-forge         
pytorch                        2.4.0 cpu_mkl_py311h02aef37_101  conda-forge         
pytorch                        2.4.0 cpu_mkl_py311hcb16b95_100  conda-forge         
pytorch                        2.4.0 cpu_mkl_py312h31352b0_101  conda-forge         
pytorch                        2.4.0 cpu_mkl_py312h3b258cc_100  conda-forge         
pytorch                        2.4.0 cpu_mkl_py38h51400c9_100  conda-forge         
pytorch                        2.4.0 cpu_mkl_py38ha4c0195_101  conda-forge         
pytorch                        2.4.0 cpu_mkl_py39h060493f_101  conda-forge         
pytorch                        2.4.0 cpu_mkl_py39h85c4de8_100  conda-forge         
pytorch                        2.4.0 cuda118_py310h954aa82_300  conda-forge         
pytorch                        2.4.0 cuda118_py310h954aa82_301  conda-forge         
pytorch                        2.4.0 cuda118_py311h4ee7bbc_300  conda-forge         
pytorch                        2.4.0 cuda118_py311h4ee7bbc_301  conda-forge         
pytorch                        2.4.0 cuda118_py312h3690e1b_300  conda-forge         
pytorch                        2.4.0 cuda118_py312h3690e1b_301  conda-forge         
pytorch                        2.4.0 cuda118_py38h32d93a2_300  conda-forge         
pytorch                        2.4.0 cuda118_py38h32d93a2_301  conda-forge         
pytorch                        2.4.0 cuda118_py39hbf661d7_300  conda-forge         
pytorch                        2.4.0 cuda118_py39hbf661d7_301  conda-forge         
pytorch                        2.4.0 cuda120_py310h2c91c31_300  conda-forge         
pytorch                        2.4.0 cuda120_py310h2c91c31_301  conda-forge         
pytorch                        2.4.0 cuda120_py311hf6aebf0_300  conda-forge         
pytorch                        2.4.0 cuda120_py311hf6aebf0_301  conda-forge         
pytorch                        2.4.0 cuda120_py312h26b3cf7_300  conda-forge         
pytorch                        2.4.0 cuda120_py312h26b3cf7_301  conda-forge         
pytorch                        2.4.0 cuda120_py38hc4689d7_300  conda-forge         
pytorch                        2.4.0 cuda120_py38hc4689d7_301  conda-forge         
pytorch                        2.4.0 cuda120_py39h17b67e0_300  conda-forge         
pytorch                        2.4.0 cuda120_py39h17b67e0_301  conda-forge         
pytorch                        2.4.0    py3.10_cpu_0  pytorch             
pytorch                        2.4.0 py3.10_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.10_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.10_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0    py3.11_cpu_0  pytorch             
pytorch                        2.4.0 py3.11_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.11_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.11_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0    py3.12_cpu_0  pytorch             
pytorch                        2.4.0 py3.12_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.12_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.12_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0     py3.8_cpu_0  pytorch             
pytorch                        2.4.0 py3.8_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.8_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.8_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0     py3.9_cpu_0  pytorch             
pytorch                        2.4.0 py3.9_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.9_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.0 py3.9_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 cpu_generic_py310h6bb2ca9_1  conda-forge         
pytorch                        2.4.1 cpu_generic_py310h6bb2ca9_2  conda-forge         
pytorch                        2.4.1 cpu_generic_py310hae68ee8_3  conda-forge         
pytorch                        2.4.1 cpu_generic_py310hcbfaffa_0  conda-forge         
pytorch                        2.4.1 cpu_generic_py311h71636e0_0  conda-forge         
pytorch                        2.4.1 cpu_generic_py311hd3aefb3_3  conda-forge         
pytorch                        2.4.1 cpu_generic_py311he611d14_1  conda-forge         
pytorch                        2.4.1 cpu_generic_py311he611d14_2  conda-forge         
pytorch                        2.4.1 cpu_generic_py312h2b7556c_3  conda-forge         
pytorch                        2.4.1 cpu_generic_py312h411db4e_0  conda-forge         
pytorch                        2.4.1 cpu_generic_py312h916ba9d_1  conda-forge         
pytorch                        2.4.1 cpu_generic_py312h916ba9d_2  conda-forge         
pytorch                        2.4.1 cpu_generic_py313h30720f7_1  conda-forge         
pytorch                        2.4.1 cpu_generic_py313h30720f7_2  conda-forge         
pytorch                        2.4.1 cpu_generic_py313h72fb371_0  conda-forge         
pytorch                        2.4.1 cpu_generic_py313h8874172_3  conda-forge         
pytorch                        2.4.1 cpu_generic_py39h0079ae9_1  conda-forge         
pytorch                        2.4.1 cpu_generic_py39h0079ae9_2  conda-forge         
pytorch                        2.4.1 cpu_generic_py39h7d91780_0  conda-forge         
pytorch                        2.4.1 cpu_generic_py39hbaadbe5_3  conda-forge         
pytorch                        2.4.1 cpu_mkl_py310h1581fbd_100  conda-forge         
pytorch                        2.4.1 cpu_mkl_py310h218c519_103  conda-forge         
pytorch                        2.4.1 cpu_mkl_py310h4ef1421_101  conda-forge         
pytorch                        2.4.1 cpu_mkl_py310h4ef1421_102  conda-forge         
pytorch                        2.4.1 cpu_mkl_py311h4c611e5_101  conda-forge         
pytorch                        2.4.1 cpu_mkl_py311h4c611e5_102  conda-forge         
pytorch                        2.4.1 cpu_mkl_py311hb499fb8_100  conda-forge         
pytorch                        2.4.1 cpu_mkl_py311hb71f701_103  conda-forge         
pytorch                        2.4.1 cpu_mkl_py312h1b0a35b_103  conda-forge         
pytorch                        2.4.1 cpu_mkl_py312ha1f5ba4_101  conda-forge         
pytorch                        2.4.1 cpu_mkl_py312ha1f5ba4_102  conda-forge         
pytorch                        2.4.1 cpu_mkl_py312hf535c18_100  conda-forge         
pytorch                        2.4.1 cpu_mkl_py313hbc6f0e9_101  conda-forge         
pytorch                        2.4.1 cpu_mkl_py313hbc6f0e9_102  conda-forge         
pytorch                        2.4.1 cpu_mkl_py313he7ed12f_103  conda-forge         
pytorch                        2.4.1 cpu_mkl_py313hf50a166_100  conda-forge         
pytorch                        2.4.1 cpu_mkl_py39h2fcb8f5_101  conda-forge         
pytorch                        2.4.1 cpu_mkl_py39h2fcb8f5_102  conda-forge         
pytorch                        2.4.1 cpu_mkl_py39h32901ce_100  conda-forge         
pytorch                        2.4.1 cpu_mkl_py39ha1b8702_103  conda-forge         
pytorch                        2.4.1 cuda118_py310h22ea9a0_300  conda-forge         
pytorch                        2.4.1 cuda118_py310h8b36b8a_303  conda-forge         
pytorch                        2.4.1 cuda118_py310hd65b3e3_301  conda-forge         
pytorch                        2.4.1 cuda118_py310hd65b3e3_302  conda-forge         
pytorch                        2.4.1 cuda118_py311h156befe_303  conda-forge         
pytorch                        2.4.1 cuda118_py311h1771f17_300  conda-forge         
pytorch                        2.4.1 cuda118_py311hb6eb748_301  conda-forge         
pytorch                        2.4.1 cuda118_py311hb6eb748_302  conda-forge         
pytorch                        2.4.1 cuda118_py312h02e3f75_303  conda-forge         
pytorch                        2.4.1 cuda118_py312h1e5d2cd_301  conda-forge         
pytorch                        2.4.1 cuda118_py312h1e5d2cd_302  conda-forge         
pytorch                        2.4.1 cuda118_py312he805367_300  conda-forge         
pytorch                        2.4.1 cuda118_py313h0a01257_303  conda-forge         
pytorch                        2.4.1 cuda118_py313h49748f1_301  conda-forge         
pytorch                        2.4.1 cuda118_py313h49748f1_302  conda-forge         
pytorch                        2.4.1 cuda118_py313h5b1df02_300  conda-forge         
pytorch                        2.4.1 cuda118_py39h31bdb47_303  conda-forge         
pytorch                        2.4.1 cuda118_py39h7622074_301  conda-forge         
pytorch                        2.4.1 cuda118_py39h7622074_302  conda-forge         
pytorch                        2.4.1 cuda118_py39hc022698_300  conda-forge         
pytorch                        2.4.1 cuda120_py310h5d94b2e_301  conda-forge         
pytorch                        2.4.1 cuda120_py310h5d94b2e_302  conda-forge         
pytorch                        2.4.1 cuda120_py310haf35510_300  conda-forge         
pytorch                        2.4.1 cuda120_py310hf7eb567_303  conda-forge         
pytorch                        2.4.1 cuda120_py311h5e7e484_300  conda-forge         
pytorch                        2.4.1 cuda120_py311h9de5d04_301  conda-forge         
pytorch                        2.4.1 cuda120_py311h9de5d04_302  conda-forge         
pytorch                        2.4.1 cuda120_py311he27b719_303  conda-forge         
pytorch                        2.4.1 cuda120_py312h257e401_300  conda-forge         
pytorch                        2.4.1 cuda120_py312h6defd05_303  conda-forge         
pytorch                        2.4.1 cuda120_py312hf8d5e09_301  conda-forge         
pytorch                        2.4.1 cuda120_py312hf8d5e09_302  conda-forge         
pytorch                        2.4.1 cuda120_py313h37013bb_303  conda-forge         
pytorch                        2.4.1 cuda120_py313h3885a58_300  conda-forge         
pytorch                        2.4.1 cuda120_py313h6ccb88c_301  conda-forge         
pytorch                        2.4.1 cuda120_py313h6ccb88c_302  conda-forge         
pytorch                        2.4.1 cuda120_py39h13e8a3a_300  conda-forge         
pytorch                        2.4.1 cuda120_py39h2e0a0f3_303  conda-forge         
pytorch                        2.4.1 cuda120_py39hb75c377_301  conda-forge         
pytorch                        2.4.1 cuda120_py39hb75c377_302  conda-forge         
pytorch                        2.4.1    py3.10_cpu_0  pytorch             
pytorch                        2.4.1 py3.10_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.10_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.10_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1    py3.11_cpu_0  pytorch             
pytorch                        2.4.1 py3.11_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.11_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.11_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1    py3.12_cpu_0  pytorch             
pytorch                        2.4.1 py3.12_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.12_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.12_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1     py3.8_cpu_0  pytorch             
pytorch                        2.4.1 py3.8_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.8_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.8_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1     py3.9_cpu_0  pytorch             
pytorch                        2.4.1 py3.9_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.9_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.4.1 py3.9_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0    py3.10_cpu_0  pytorch             
pytorch                        2.5.0 py3.10_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0 py3.10_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0 py3.10_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0    py3.11_cpu_0  pytorch             
pytorch                        2.5.0 py3.11_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0 py3.11_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0 py3.11_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0    py3.12_cpu_0  pytorch             
pytorch                        2.5.0 py3.12_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0 py3.12_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0 py3.12_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0     py3.9_cpu_0  pytorch             
pytorch                        2.5.0 py3.9_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0 py3.9_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.5.0 py3.9_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1 cpu_generic_py310hae68ee8_0  conda-forge         
pytorch                        2.5.1 cpu_generic_py310hae68ee8_2  conda-forge         
pytorch                        2.5.1 cpu_generic_py310hae68ee8_3  conda-forge         
pytorch                        2.5.1 cpu_generic_py311hd3aefb3_0  conda-forge         
pytorch                        2.5.1 cpu_generic_py311hd3aefb3_2  conda-forge         
pytorch                        2.5.1 cpu_generic_py311hd3aefb3_3  conda-forge         
pytorch                        2.5.1 cpu_generic_py312h2b7556c_0  conda-forge         
pytorch                        2.5.1 cpu_generic_py312h2b7556c_2  conda-forge         
pytorch                        2.5.1 cpu_generic_py312h2b7556c_3  conda-forge         
pytorch                        2.5.1 cpu_generic_py313h8874172_0  conda-forge         
pytorch                        2.5.1 cpu_generic_py313h8874172_2  conda-forge         
pytorch                        2.5.1 cpu_generic_py313h8874172_3  conda-forge         
pytorch                        2.5.1 cpu_generic_py39hbaadbe5_0  conda-forge         
pytorch                        2.5.1 cpu_generic_py39hbaadbe5_2  conda-forge         
pytorch                        2.5.1 cpu_generic_py39hbaadbe5_3  conda-forge         
pytorch                        2.5.1 cpu_mkl_py310h218c519_100  conda-forge         
pytorch                        2.5.1 cpu_mkl_py310h218c519_102  conda-forge         
pytorch                        2.5.1 cpu_mkl_py310h89e431c_103  conda-forge         
pytorch                        2.5.1 cpu_mkl_py311hb71f701_100  conda-forge         
pytorch                        2.5.1 cpu_mkl_py311hb71f701_102  conda-forge         
pytorch                        2.5.1 cpu_mkl_py311hc928171_103  conda-forge         
pytorch                        2.5.1 cpu_mkl_py312h01fbe9c_103  conda-forge         
pytorch                        2.5.1 cpu_mkl_py312h1b0a35b_100  conda-forge         
pytorch                        2.5.1 cpu_mkl_py312h1b0a35b_102  conda-forge         
pytorch                        2.5.1 cpu_mkl_py313h9aca207_103  conda-forge         
pytorch                        2.5.1 cpu_mkl_py313he7ed12f_100  conda-forge         
pytorch                        2.5.1 cpu_mkl_py313he7ed12f_102  conda-forge         
pytorch                        2.5.1 cpu_mkl_py39h5c24141_103  conda-forge         
pytorch                        2.5.1 cpu_mkl_py39ha1b8702_100  conda-forge         
pytorch                        2.5.1 cpu_mkl_py39ha1b8702_102  conda-forge         
pytorch                        2.5.1 cuda118_py310h8b36b8a_300  conda-forge         
pytorch                        2.5.1 cuda118_py310h8b36b8a_302  conda-forge         
pytorch                        2.5.1 cuda118_py310h920319e_303  conda-forge         
pytorch                        2.5.1 cuda118_py311h156befe_300  conda-forge         
pytorch                        2.5.1 cuda118_py311h156befe_302  conda-forge         
pytorch                        2.5.1 cuda118_py311hb9b6578_303  conda-forge         
pytorch                        2.5.1 cuda118_py312h02e3f75_300  conda-forge         
pytorch                        2.5.1 cuda118_py312h02e3f75_302  conda-forge         
pytorch                        2.5.1 cuda118_py312h919e71f_303  conda-forge         
pytorch                        2.5.1 cuda118_py313h0a01257_300  conda-forge         
pytorch                        2.5.1 cuda118_py313h0a01257_302  conda-forge         
pytorch                        2.5.1 cuda118_py313h40cdc2d_303  conda-forge         
pytorch                        2.5.1 cuda118_py39h31bdb47_300  conda-forge         
pytorch                        2.5.1 cuda118_py39h31bdb47_302  conda-forge         
pytorch                        2.5.1 cuda118_py39h89da91e_303  conda-forge         
pytorch                        2.5.1 cuda120_py310h9d63651_303  conda-forge         
pytorch                        2.5.1 cuda120_py310hf7eb567_300  conda-forge         
pytorch                        2.5.1 cuda120_py310hf7eb567_302  conda-forge         
pytorch                        2.5.1 cuda120_py311h7a71dd8_303  conda-forge         
pytorch                        2.5.1 cuda120_py311he27b719_300  conda-forge         
pytorch                        2.5.1 cuda120_py311he27b719_302  conda-forge         
pytorch                        2.5.1 cuda120_py312h6defd05_300  conda-forge         
pytorch                        2.5.1 cuda120_py312h6defd05_302  conda-forge         
pytorch                        2.5.1 cuda120_py312hd285dae_303  conda-forge         
pytorch                        2.5.1 cuda120_py313h37013bb_300  conda-forge         
pytorch                        2.5.1 cuda120_py313h37013bb_302  conda-forge         
pytorch                        2.5.1 cuda120_py313h869cad7_303  conda-forge         
pytorch                        2.5.1 cuda120_py39h2e0a0f3_300  conda-forge         
pytorch                        2.5.1 cuda120_py39h2e0a0f3_302  conda-forge         
pytorch                        2.5.1 cuda120_py39hfb32a81_303  conda-forge         
pytorch                        2.5.1 cuda126_py310h4acf282_301  conda-forge         
pytorch                        2.5.1 cuda126_py310h4acf282_302  conda-forge         
pytorch                        2.5.1 cuda126_py310he4c8055_303  conda-forge         
pytorch                        2.5.1 cuda126_py311h8adc4d4_301  conda-forge         
pytorch                        2.5.1 cuda126_py311h8adc4d4_302  conda-forge         
pytorch                        2.5.1 cuda126_py311hd4abd4e_303  conda-forge         
pytorch                        2.5.1 cuda126_py312h7c58cdf_303  conda-forge         
pytorch                        2.5.1 cuda126_py312hb0dc81f_301  conda-forge         
pytorch                        2.5.1 cuda126_py312hb0dc81f_302  conda-forge         
pytorch                        2.5.1 cuda126_py313ha14af55_301  conda-forge         
pytorch                        2.5.1 cuda126_py313ha14af55_302  conda-forge         
pytorch                        2.5.1 cuda126_py313he9a4f5b_303  conda-forge         
pytorch                        2.5.1 cuda126_py39h07e2c9a_303  conda-forge         
pytorch                        2.5.1 cuda126_py39hfe5c751_301  conda-forge         
pytorch                        2.5.1 cuda126_py39hfe5c751_302  conda-forge         
pytorch                        2.5.1    py3.10_cpu_0  pytorch             
pytorch                        2.5.1 py3.10_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1 py3.10_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1 py3.10_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1    py3.11_cpu_0  pytorch             
pytorch                        2.5.1 py3.11_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1 py3.11_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1 py3.11_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1    py3.12_cpu_0  pytorch             
pytorch                        2.5.1 py3.12_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1 py3.12_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1 py3.12_cuda12.4_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1     py3.9_cpu_0  pytorch             
pytorch                        2.5.1 py3.9_cuda11.8_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1 py3.9_cuda12.1_cudnn9.1.0_0  pytorch             
pytorch                        2.5.1 py3.9_cuda12.4_cudnn9.1.0_0  pytorch             

(2)因为本地安装的cuda是12.5,并且作者命令中使用了python3.8,所以根据上面的版本号与对应关系,找一个能满足这两个条件的pytorch版本直接install即可,在安装的过程中,也会自动安装好pytorch需要的几个cuda包

(base) lee@lee-System-Product-Name:~/project/PhotoRegCodes$ conda create -n photoreg pytorch=2.4.1=py3.8_cuda12.4_cudnn9.1.0_0 torchvision torchaudio -c pytorch -c nvidia
Channels:- pytorch- nvidia- conda-forge- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free- defaults
Platform: linux-64
Collecting package metadata (repodata.json): - Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /pkgs/r/noarch/repodata.json.zst\ Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /nvidia/noarch/repodata.json.zstRetrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /conda-forge/linux-64/repodata.json.zst/ Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /conda-forge/noarch/repodata.json.zst| Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /conda-forge/linux-64/repodata.json.zst/ Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /nvidia/noarch/repodata.json.zstRetrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /conda-forge/noarch/repodata.json.zst- Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /pkgs/r/noarch/repodata.json.zst\ Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /pkgs/r/noarch/repodata.json.zst| Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /conda-forge/noarch/repodata.json.zstRetrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /conda-forge/linux-64/repodata.json.zstfailedProxyError: Conda cannot proceed due to an error in your proxy configuration.
Check for typos and other configuration errors in any '.netrc' file in your home directory,
any environment variables ending in '_PROXY', and any other system-wide proxy
configuration settings.

然后发现网络问题一直安装不了,于是添加设置国内的几个源

(3)conda设置国内的源

conda添加清华镜像源_conda配置清华镜像源-CSDN博客

最后完成pytorch与附带的几个cuda包的安装,像一些重复的包就没必要安装进去,比如cuda编译器,如果在conda环境下找不到,它就会自动使用全局也就是系统的cuda编译器来完成编译。

2.QObject::moveToThread: Current thread(...) is not the object`s thread. Cannot move to target thread(

在跑photoreg的时候,报这个错,网上的说法是conda中的pyqt库与pip的opencv库冲突了,有三种方法尝试解决:

QObject::moveToThread: Current thread(...) is not the object`s thread. Cannot move to target thread(_qobject::movetothread: current thread (0x17a7040) -CSDN博客

查看了我的opencv版本是4.10,但是我的电脑使用上面的方法没有用,所以就直接降级,一路降到了4.2的版本才正常!

3.ERROR:    Exception in ASGI application

在部署好triposr运行python gradio_app.py的时候,报错

(triposr) lee@lee-System-Product-Name:~/project/TripoSR$ python gradio_app.py
/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/numba/np/ufunc/parallel.py:371: NumbaWarning: The TBB threading layer requires TBB version 2021 update 6 or later i.e., TBB_INTERFACE_VERSION >= 12060. Found TBB_INTERFACE_VERSION = 12050. The TBB threading layer is disabled.warnings.warn(problem)
/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead._torch_pytree._register_pytree_node(
/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead._torch_pytree._register_pytree_node(
Running on local URL:  http://127.0.0.1:7860To create a public link, set `share=True` in `launch()`.
IMPORTANT: You are using gradio version 4.8.0, however version 4.44.1 is available, please upgrade.
--------
ERROR:    Exception in ASGI application
Traceback (most recent call last):File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/type_adapter.py", line 270, in _init_core_attrsself._core_schema = _getattr_no_parents(self._type, '__pydantic_core_schema__')File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/type_adapter.py", line 112, in _getattr_no_parentsraise AttributeError(attribute)
AttributeError: __pydantic_core_schema__During handling of the above exception, another exception occurred:Traceback (most recent call last):File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/uvicorn/protocols/http/h11_impl.py", line 406, in run_asgiresult = await app(  # type: ignore[func-returns-value]File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/uvicorn/middleware/proxy_headers.py", line 60, in __call__return await self.app(scope, receive, send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/fastapi/applications.py", line 1054, in __call__await super().__call__(scope, receive, send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/applications.py", line 113, in __call__await self.middleware_stack(scope, receive, send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/middleware/errors.py", line 187, in __call__raise excFile "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/middleware/errors.py", line 165, in __call__await self.app(scope, receive, _send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/middleware/cors.py", line 93, in __call__await self.simple_response(scope, receive, send, request_headers=headers)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/middleware/cors.py", line 144, in simple_responseawait self.app(scope, receive, send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/middleware/exceptions.py", line 62, in __call__await wrap_app_handling_exceptions(self.app, conn)(scope, receive, send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/_exception_handler.py", line 53, in wrapped_appraise excFile "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/_exception_handler.py", line 42, in wrapped_appawait app(scope, receive, sender)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/routing.py", line 715, in __call__await self.middleware_stack(scope, receive, send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/routing.py", line 735, in appawait route.handle(scope, receive, send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/routing.py", line 288, in handleawait self.app(scope, receive, send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/routing.py", line 76, in appawait wrap_app_handling_exceptions(app, request)(scope, receive, send)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/_exception_handler.py", line 53, in wrapped_appraise excFile "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/_exception_handler.py", line 42, in wrapped_appawait app(scope, receive, sender)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/starlette/routing.py", line 73, in appresponse = await f(request)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/fastapi/routing.py", line 291, in appsolved_result = await solve_dependencies(File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 666, in solve_dependencies) = await request_body_to_args(  # body_params checked aboveFile "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 891, in request_body_to_argsfields_to_extract = get_cached_model_fields(first_field.type_)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/fastapi/_compat.py", line 659, in get_cached_model_fieldsreturn get_model_fields(model)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/fastapi/_compat.py", line 285, in get_model_fieldsreturn [File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/fastapi/_compat.py", line 286, in <listcomp>ModelField(field_info=field_info, name=name)File "<string>", line 6, in __init__File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/fastapi/_compat.py", line 111, in __post_init__self._type_adapter: TypeAdapter[Any] = TypeAdapter(File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/type_adapter.py", line 257, in __init__self._init_core_attrs(rebuild_mocks=False)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/type_adapter.py", line 135, in wrappedreturn func(self, *args, **kwargs)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/type_adapter.py", line 277, in _init_core_attrsself._core_schema = _get_schema(self._type, config_wrapper, parent_depth=self._parent_depth)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/type_adapter.py", line 95, in _get_schemaschema = gen.generate_schema(type_)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 655, in generate_schemaschema = self._generate_schema_inner(obj)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 908, in _generate_schema_innerreturn self._annotated_schema(obj)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 2028, in _annotated_schemaschema = self._apply_annotations(source_type, annotations)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 2107, in _apply_annotationsschema = get_inner_schema(source_type)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_schema_generation_shared.py", line 83, in __call__schema = self._handler(source_type)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 2189, in new_handlerschema = metadata_get_schema(source, get_inner_schema)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 2185, in <lambda>lambda source, handler: handler(source)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_schema_generation_shared.py", line 83, in __call__schema = self._handler(source_type)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 2088, in inner_handlerschema = self._generate_schema_inner(obj)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 929, in _generate_schema_innerreturn self.match_type(obj)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 1029, in match_typereturn self._match_generic_type(obj, origin)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 1058, in _match_generic_typereturn self._union_schema(obj)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 1378, in _union_schemachoices.append(self.generate_schema(arg))File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 655, in generate_schemaschema = self._generate_schema_inner(obj)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 929, in _generate_schema_innerreturn self.match_type(obj)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 1038, in match_typereturn self._unknown_type_schema(obj)File "/home/lee/miniconda3/envs/triposr/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py", line 558, in _unknown_type_schemaraise PydanticSchemaGenerationError(
pydantic.errors.PydanticSchemaGenerationError: Unable to generate pydantic-core schema for <class 'starlette.requests.Request'>. Set `arbitrary_types_allowed=True` in the model_config to ignore this error or implement `__get_pydantic_core_schema__` on your type to fully support it.If you got this error by calling handler(<some type>) within `__get_pydantic_core_schema__` then you likely need to call `handler.generate_schema(<some type>)` since we do not call `__get_pydantic_core_schema__` on `<some type>` otherwise to avoid infinite recursion.

这是由于gradio版本与pydantic版本不匹配导致的错误。

升级合适的版本即可解决,需要尝试多次

我查看了requirements.txt,因为作者推荐的python版本是>3.8,而我的是3.10,所有只升级gradio会因为其他库版本低而冲突,

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
tokenizers 0.14.1 requires huggingface_hub<0.18,>=0.16.4, but you have huggingface-hub 0.26.2 which is incompatible.ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
gradio 4.43.0 requires huggingface-hub>=0.19.3, but you have huggingface-hub 0.17.0 which is incompatible.
gradio-client 1.3.0 requires huggingface-hub>=0.19.3, but you have huggingface-hub 0.17.0 which is incompatible.ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
tokenizers 0.14.1 requires huggingface_hub<0.18,>=0.16.4, but you have huggingface-hub 0.26.2 which is incompatible.

so,我的解决办法是一键直接把当前的库全部升级,让pip去解决版本关系的问题:

pip install --upgrade -r requirements.txt 

然后就行了不报错了

三、python代码bug

1.文件中的图片损坏,OSError: image file is truncated (7 bytes not processed)

【Bug解决】OSError: image file is truncated (7 bytes not processed)-CSDN博客

这位博主还写了检测图片是否有损坏的脚本,非常有用!

2.RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory

在运行photoreg代码的时候报这个错,原因是要加载的预训练权重文件损坏或者不完整,另外代码中前面使用torch.hub.load()下载过dino v2的模型,但是中间可能断了,所以,需要找到下载的缓存路径删除已下载的部分,重新下载

model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')

缓存路径可以询问GTP:

​​​​​​​

四、软件使用

1.meshlab使用经验

MeshLab使用经验_meshlab背景颜色-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/476238.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ant-design-vue中table组件多列排序

antD中table组件多列排序 使用前注意实现效果图实现的功能点及相关代码1. 默认按某几个字段排序2. 点击排序按钮可同时对多个字段进行排序3. 点击重置按钮可恢复默认排序状态。 功能实现完整的关键代码 使用前注意 先要确认你使用的antD版本是否支持多列排序&#xff0c;我这里…

影视后期学习Ⅰ~

1.DV是光盘 磁带 2.序列就是我们要制作的一个视频。 打开界面显示&#xff1a; 一号面板放的是素材&#xff0c;二号面板叫源监视器面板&#xff08;它的名字需要记住&#xff09;在一号面板点击文件之后&#xff0c;进入二号面板&#xff0c;在二号面板预览没问题后&#xf…

大语言模型---Llama模型文件介绍;文件组成

文章目录 1. 概要2. 文件组成 1. 概要 在使用 LLaMA&#xff08;Large Language Model Meta AI&#xff09;权重时&#xff0c;通常会涉及到与模型权重存储和加载相关的文件。这些文件通常是以二进制格式存储的&#xff0c;具有特定的结构来支持高效的模型操作。以下以Llama-7…

elasticsearch介绍和部署

1 elasticsearch介绍 Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎。可以很方便的使大量数据具有搜索、分析和探索的能力。充分利用Elasticsearch的水平伸缩性。Elasticsearch 的实现原理主要分为以下几个步骤&#xff0c;首先用户将数据提交到Elasticsea…

ZYNQ-7020嵌入式系统学习笔记(1)——使用ARM核配置UART发送Helloworld

本工程实现调用ZYNQ-7000的内部ARM处理器&#xff0c;通过UART给电脑发送字符串。 硬件&#xff1a;正点原子领航者-7020 开发平台&#xff1a;Vivado 2018、 SDK 1 Vivado部分操作 1.1 新建工程 设置工程名&#xff0c;选择芯片型号。 1.2 添加和配置PS IP 点击IP INTEGR…

Jenkins更换主题颜色+登录页面LOGO图片

默认主题和logo图片展示 默认主题黑色和白色。 默认LOGO图片 安装插件 Login ThemeMaterial Theme 系统管理–>插件管理–>Available plugins 搜不到Login Theme是因为我提前装好了 没有外网的可以参考这篇离线安装插件 验证插件并修改主题颜色 系统管理–>A…

《操作系统》实验内容 实验二 编程实现进程(线程)同步和互斥(Python 与 PyQt5 实现)

实验内容 实验二 编程实现进程&#xff08;线程&#xff09;同步和互斥 1&#xff0e;实验的目的 &#xff08;1&#xff09;通过编写程序实现进程同步和互斥&#xff0c;使学生掌握有关进程&#xff08;线程&#xff09;同步与互斥的原理&#xff0c;以及解决进程&#xf…

【倍数问题——同余系】

题目 代码 #include <bits/stdc.h> using namespace std; const int N 1e5 10, M 1e3 10; int maxx[M][4]; void consider(int r, int x) {if(x > maxx[r][1]){maxx[r][3] maxx[r][2];maxx[r][2] maxx[r][1];maxx[r][1] x;}else if(x > maxx[r][2]){maxx[…

结合第三方模块requests,文件IO、正则表达式,通过函数封装爬虫应用采集数据

#引用BeautifulSoup更方便提取html信息&#xff1b;requests模块&#xff0c;发生http请求&#xff1b;os模块&#xff0c;文件写入import requests from bs4 import BeautifulSoup import os#当使用requests库发送请求时&#xff0c;如果不设置User - Agent&#xff0c;默认的…

Linux虚拟机网络配置

Linux固定IP 跳转到 cd /etc/sysconfig/network-scripts/ 打开文件并编辑 vim ifcfg-ens33 增加或修改选中内容 重启网卡 systemctl restart network ifconfig -a 查看ip已固定 虚拟机网络编辑器调整 子网IP进行修改&#xff0c;例如本机IP修改为10.212.197.34 此处就修改…

CSS实现实现当文本内容过长时,中间显示省略号...,两端正常展示

HTML 结构解析 文档结构: <ul class"con">: 一个无序列表&#xff0c;包含多个列表项。 每个 <li class"wrap"> 表示一个列表项&#xff0c;内部有两个 <span> 元素&#xff1a; <span class"txt">: 显示文本内容。<…

排序算法:直接插入排序,希尔排序,选择排序,快速排序,堆排序,归并排序

1.直接插入排序 基本思想&#xff1a;把待排序的数按照大小逐个插入到前面已经排序好的有序序列中&#xff0c;直到所有的都插入完为止&#xff0c;得到一个新的有序序列。 如图所示&#xff0c;当插入第i个&#xff08;i>1&#xff09;元素的时候&#xff0c;前面的arr[0]…

Qt:信号槽

一. 信号槽概念 信号槽 是 Qt 框架中一种用于对象间通信的机制 。它通过让一个对象发出信号&#xff0c;另一个对象连接到这个信号的槽上来实现通信。信号槽机制是 Qt 的核心特性之一&#xff0c;提供了一种灵活且类型安全的方式来处理事件和数据传递。 1. 信号的本质 QT中&a…

aws凭证(一)凭证存储

AWS 凭证用于验证身份&#xff0c;并授权对 DynamoDB 等等 AWS 服务的访问。配置了aws凭证后&#xff0c;才可以通过编程方式或从AWS CLI连接访问AWS资源。凭证存储在哪里呢&#xff1f;有以下几个方法&#xff1a; 一、使用文件存储 1、介绍 文件存储适用于长期和多账户配置…

Win11下载和配置VSCode(详细讲解)

配置VSCode需要的工具&#xff1a; 一、MinGW-w64 二、Visual Studio Code 一、MinGW-w64下载 1、下载 MinGW官网地址&#xff1a; Downloads - MinGW-w64 直链下载&#xff1a; 下载 mingw-w64-install.exe &#xff08;MinGW-w64 - 适用于 32 位和 64 位 Windows&#…

Python简介以及解释器安装(保姆级教学)

目录 一、Python介绍 1、简介 2、特点 3、来源 4、发展 二、Python解释器的安装 1、安装包下载 2、下载完成后&#xff0c;点击安装包进入安装流程 一、Python介绍 1、简介 Python 是一门解释型、面向对象以及动态数据类型的高级程序设计语言&#xff0c;语法简洁&…

【论文速读】| RobustKV:通过键值对驱逐防御大语言模型免受越狱攻击

基本信息 原文标题&#xff1a;ROBUSTKV: DEFENDING LARGE LANGUAGE MODELS AGAINST JAILBREAK ATTACKS VIA KV EVICTION 原文作者&#xff1a;Tanqiu Jiang, Zian Wang, Jiacheng Liang, Changjiang Li, Yuhui Wang, Ting Wang 作者单位&#xff1a;Stony Brook University…

美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设

随着科技的持续发展&#xff0c;建筑行业正朝着智能化的方向迅猛迈进。智慧工地作为建筑行业智能化的关键体现形式&#xff0c;借助各类先进技术来提升工地的管理效率、安全性以及生产效益。在这个过程中&#xff0c;视频汇聚平台发挥着极为重要的作用。以畅联AIoT开放云平台为…

AI赋能:PPT制作的创意革命

在现代信息社会&#xff0c;PPT已成为沟通和展示的利器。然而&#xff0c;如何快速制作出高质量的PPT&#xff0c;却是一门学问。幸运的是&#xff0c;智能生成PPT技术的出现&#xff0c;让这一切变得轻松自如。 ai生成PPT技术&#xff0c;犹如一位无形的助手&#xff0c;帮助用…

实战 | C#中使用YoloV8和OpenCvSharp实现目标检测 (步骤 + 源码)

导 读 本文主要介绍在C#中使用YoloV8实现目标检测,并给详细步骤和代码。 详细步骤 【1】环境和依赖项。 需先安装VS2022最新版,.NetFramework8.0,然后新建项目,nuget安装 YoloSharp,YoloSharp介绍: https://github.com/dme-compunet/YoloSharp 最新版6.0.1,本文…