Java NIO 核心知识总结

在学习 NIO 之前,需要先了解一下计算机 I/O 模型的基础理论知识。还不了解的话,可以参考我写的这篇文章:Java IO 模型详解。

一、NIO 简介

在传统的 Java I/O 模型(BIO)中,I/O 操作是以阻塞的方式进行的。也就是说,当一个线程执行一个 I/O 操作时,它会被阻塞直到操作完成。这种阻塞模型在处理多个并发连接时可能会导致性能瓶颈,因为需要为每个连接创建一个线程,而线程的创建和切换都是有开销的。

为了解决这个问题,在 Java1.4 版本引入了一种新的 I/O 模型 — NIO (New IO,也称为 Non-blocking IO) 。NIO 弥补了同步阻塞 I/O 的不足,它在标准 Java 代码中提供了非阻塞、面向缓冲、基于通道的 I/O,可以使用少量的线程来处理多个连接,大大提高了 I/O 效率和并发。

下图是 BIO、NIO 和 AIO 处理客户端请求的简单对比图(关于 AIO 的介绍,可以看我写的这篇文章:Java IO 模型详解,不是重点,了解即可)。

⚠️需要注意:使用 NIO 并不一定意味着高性能,它的性能优势主要体现在高并发和高延迟的网络环境下。当连接数较少、并发程度较低或者网络传输速度较快时,NIO 的性能并不一定优于传统的 BIO 

二、工作原理

  1. 非阻塞模式

    • Java NIO的非阻塞模式使得一个线程可以从某个通道发送或读取数据,但它仅能得到当前可用的数据。如果没有数据可用,线程不会被阻塞,而是可以继续做其他事情。

    • 这种非阻塞模式提高了线程的利用率和应用的性能。

  2. 缓冲区操作

    • 在NIO中,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。

    • 缓冲区提供了对数据读写的灵活性和高效性。通过缓冲区的position、limit和capacity属性,可以精确地控制数据的读写操作。

  3. 选择器监听

    • 选择器通过监听多个通道的事件来管理多个输入和输出通道。

    • 当某个通道的事件发生时(如连接请求、数据到达等),选择器会返回并告知哪些通道的事件已经就绪。

    • 线程可以根据选择器返回的信息来处理相应的事件。

三、NIO 核心组件

NIO 主要包括以下三个核心组件:

  • Buffer(缓冲区)

    • NIO 读写数据都是通过缓冲区进行操作的。读操作的时候将 Channel 中的数据填充到 Buffer 中,而写操作时将 Buffer 中的数据写入到 Channel 中。

    • 缓冲区是一个容器对象,它实质上是一个数组。在NIO中,所有数据都是用缓冲区处理的。缓冲区提供了对数据读写的灵活性和高效性。

    • 常用的缓冲区类型包括:ByteBuffer(字节缓冲区)、CharBuffer(字符缓冲区)、IntBuffer(整数缓冲区)、LongBuffer(长整型缓冲区)、DoubleBuffer(双精度浮点缓冲区)和FloatBuffer(单精度浮点缓冲区)。

    • 缓冲区有三个关键属性:capacity(容量)、position(位置)和limit(限制)。capacity表示缓冲区的总大小,position表示当前读写操作的位置,limit表示当前可以操作的最大位置。

  • Channel(通道)

    • Channel 是一个双向的、可读可写的数据传输通道,NIO 通过 Channel 来实现数据的输入输出。通道是一个抽象的概念,它可以代表文件、套接字或者其他数据源之间的连接。

    • 通道是NIO中用于读写数据的通道,它类似于传统的流,但提供了更高的性能和更多的功能。

    • 通道可以是双向的,这意味着它既可以从通道读取数据,也可以向通道写入数据。

    • 常用的通道类型包括:FileChannel(文件通道)、SocketChannel(套接字通道)、ServerSocketChannel(服务器套接字通道)和DatagramChannel(数据报通道)。

  • Selector(选择器)

    • 允许一个线程处理多个 Channel,基于事件驱动的 I/O 多路复用模型。所有的 Channel 都可以注册到 Selector 上,由 Selector 来分配线程来处理事件。

    • 选择器是NIO中的一个重要组件,它允许一个线程监视多个通道的事件(如连接请求、数据到达等)。

    • 通过选择器,一个线程可以管理多个输入和输出通道,从而提高了网络应用的性能和响应速度。

    • 使用选择器时,需要先将通道注册到选择器上,并指定感兴趣的事件类型。然后,通过调用选择器的select()方法来等待事件的发生。一旦有事件发生,选择器就会返回并告知哪些通道的事件已经就绪。

三者的关系如下图所示(暂时不理解没关系,后文会详细介绍):

下面详细介绍一下这三个组件。

1、Buffer(缓冲区)

在传统的 BIO 中,数据的读写是面向流的, 分为字节流和字符流。

在 Java 1.4 的 NIO 库中,所有数据都是用缓冲区处理的,这是新库和之前的 BIO 的一个重要区别,有点类似于 BIO 中的缓冲流。NIO 在读取数据时,它是直接读到缓冲区中的。在写入数据时,写入到缓冲区中。 使用 NIO 在读写数据时,都是通过缓冲区进行操作。

Buffer 的子类如下图所示。其中,最常用的是 ByteBuffer,它可以用来存储和操作字节数据。

你可以将 Buffer 理解为一个数组,IntBufferFloatBufferCharBuffer 等分别对应 int[]float[]char[] 等。

为了更清晰地认识缓冲区,我们来简单看看Buffer 类中定义的四个成员变量:

public abstract class Buffer {// Invariants: mark <= position <= limit <= capacityprivate int mark = -1;private int position = 0;private int limit;private int capacity;
}

这四个成员变量的具体含义如下:

  1. 容量(capacity):Buffer可以存储的最大数据量,Buffer创建时设置且不可改变;

  2. 界限(limit):Buffer 中可以读/写数据的边界。写模式下,limit 代表最多能写入的数据,一般等于 capacity(可以通过limit(int newLimit)方法设置);读模式下,limit 等于 Buffer 中实际写入的数据大小。

  3. 位置(position):下一个可以被读写的数据的位置(索引)。从写操作模式到读操作模式切换的时候(flip),position 都会归零,这样就可以从头开始读写了。

  4. 标记(mark):Buffer允许将位置直接定位到该标记处,这是一个可选属性;

并且,上述变量满足如下的关系:0 <= mark <= position <= limit <= capacity

另外,Buffer 有读模式和写模式这两种模式,分别用于从 Buffer 中读取数据或者向 Buffer 中写入数据。Buffer 被创建之后默认是写模式,调用 flip() 可以切换到读模式。如果要再次切换回写模式,可以调用 clear() 或者 compact() 方法。

Buffer 对象不能通过 new 调用构造方法创建对象 ,只能通过静态方法实例化 Buffer

这里以 ByteBuffer为例进行介绍:

// 分配堆内存
public static ByteBuffer allocate(int capacity);
// 分配直接内存
public static ByteBuffer allocateDirect(int capacity);

Buffer 最核心的两个方法:

  1. get : 读取缓冲区的数据

  2. put向缓冲区写入数据

除上述两个方法之外,其他的重要方法:

  • flip将缓冲区从写模式切换到读模式,它会将 limit 的值设置为当前 position 的值,将 position 的值设置为 0。

  • clear:  清空缓冲区,将缓冲区从读模式切换到写模式,并将 position 的值设置为 0,将 limit 的值设置为 capacity 的值。

Buffer 中数据变化的过程:

import java.nio.*;public class CharBufferDemo {public static void main(String[] args) {// 分配一个容量为8的CharBufferCharBuffer buffer = CharBuffer.allocate(8);System.out.println("初始状态:");printState(buffer);// 向buffer写入3个字符buffer.put('a').put('b').put('c');System.out.println("写入3个字符后的状态:");printState(buffer);// 调用flip()方法,准备读取buffer中的数据,将 position 置 0,limit 的置 3buffer.flip();System.out.println("调用flip()方法后的状态:");printState(buffer);// 读取字符while (buffer.hasRemaining()) {System.out.print(buffer.get());}// 调用clear()方法,清空缓冲区,将 position 的值置为 0,将 limit 的值置为 capacity 的值buffer.clear();System.out.println("调用clear()方法后的状态:");printState(buffer);}// 打印buffer的capacity、limit、position、mark的位置private static void printState(CharBuffer buffer) {System.out.print("capacity: " + buffer.capacity());System.out.print(", limit: " + buffer.limit());System.out.print(", position: " + buffer.position());System.out.print(", mark 开始读取的字符: " + buffer.mark());System.out.println("\n");}
}

输出:

初始状态:
capacity: 8, limit: 8, position: 0

写入3个字符后的状态:
capacity: 8, limit: 8, position: 3

准备读取buffer中的数据!

调用flip()方法后的状态:
capacity: 8, limit: 3, position: 0

读取到的数据:abc

调用clear()方法后的状态:
capacity: 8, limit: 8, position: 0

为了帮助理解,我绘制了一张图片展示 capacitylimitposition每一阶段的变化。

2、Channel(通道)

Channel 是一个通道,它建立了与数据源(如文件、网络套接字等)之间的连接。我们可以利用它来读取和写入数据,就像打开了一条自来水管,让数据在 Channel 中自由流动。

BIO 中的流是单向的,分为各种 InputStream(输入流)和 OutputStream(输出流),数据只是在一个方向上传输。通道与流的不同之处在于通道是双向的,它可以用于读、写或者同时用于读写。

Channel 与前面介绍的 Buffer 打交道,读操作的时候将 Channel 中的数据填充到 Buffer 中,而写操作时将 Buffer 中的数据写入到 Channel 中。

另外,因为 Channel 是全双工的,所以它可以比流更好地映射底层操作系统的 API。特别是在 UNIX 网络编程模型中,底层操作系统的通道都是全双工的,同时支持读写操作。

Channel 的子类如下图所示。

其中,最常用的是以下几种类型的通道:

  • FileChannel文件访问通道;

  • SocketChannelServerSocketChannelTCP 通信通道;

  • DatagramChannelUDP 通信通道;

Channel 最核心的两个方法:

  1. read读取数据并写入到 Buffer 中。

  2. write将 Buffer 中的数据写入到 Channel 中。

这里我们以 FileChannel 为例演示一下是读取文件数据的。

RandomAccessFile reader = new RandomAccessFile("/Users/guide/Documents/test_read.in", "r"))
FileChannel channel = reader.getChannel();
ByteBuffer buffer = ByteBuffer.allocate(1024);
channel.read(buffer);

3、Selector(选择器)

Selector(选择器) 是 NIO 中的一个关键组件,它允许一个线程处理多个 Channel。Selector 是基于事件驱动的 I/O 多路复用模型,主要运作原理是:通过 Selector 注册通道的事件,Selector 会不断地轮询注册在其上的 Channel。当事件发生时,比如:某个 Channel 上面有新的 TCP 连接接入、读和写事件,这个 Channel 就处于就绪状态,会被 Selector 轮询出来。Selector 会将相关的 Channel 加入到就绪集合中。通过 SelectionKey 可以获取就绪 Channel 的集合,然后对这些就绪的 Channel 进行相应的 I/O 操作。

一个多路复用器 Selector 可以同时轮询多个 Channel,由于 JDK 使用了 epoll() 代替传统的 select 实现,所以它并没有最大连接句柄 1024/2048 的限制。这也就意味着只需要一个线程负责 Selector 的轮询,就可以接入成千上万的客户端。

Selector 可以监听以下四种事件类型:

  1. SelectionKey.OP_ACCEPT表示通道接受连接的事件,这通常用于 ServerSocketChannel

  2. SelectionKey.OP_CONNECT表示通道完成连接的事件,这通常用于 SocketChannel

  3. SelectionKey.OP_READ表示通道准备好进行读取的事件,即有数据可读。

  4. SelectionKey.OP_WRITE表示通道准备好进行写入的事件,即可以写入数据。

Selector是抽象类,可以通过调用此类的 open() 静态方法来创建 Selector 实例。Selector 可以同时监控多个 SelectableChannelIO 状况,是非阻塞 IO 的核心。

一个 Selector 实例有三个 SelectionKey 集合:

  1. 所有的 SelectionKey 集合:代表了注册在该 Selector 上的 Channel,这个集合可以通过 keys() 方法返回。

  2. 被选择的 SelectionKey 集合:代表了所有可通过 select() 方法获取的、需要进行 IO 处理的 Channel,这个集合可以通过 selectedKeys() 返回。

  3. 被取消的 SelectionKey 集合:代表了所有被取消注册关系的 Channel,在下一次执行 select() 方法时,这些 Channel 对应的 SelectionKey 会被彻底删除,程序通常无须直接访问该集合,也没有暴露访问的方法。

简单演示一下如何遍历被选择的 SelectionKey 集合并进行处理:

Set<SelectionKey> selectedKeys = selector.selectedKeys();
Iterator<SelectionKey> keyIterator = selectedKeys.iterator();
while (keyIterator.hasNext()) {SelectionKey key = keyIterator.next();if (key != null) {if (key.isAcceptable()) {// ServerSocketChannel 接收了一个新连接} else if (key.isConnectable()) {// 表示一个新连接建立} else if (key.isReadable()) {// Channel 有准备好的数据,可以读取} else if (key.isWritable()) {// Channel 有空闲的 Buffer,可以写入数据}}keyIterator.remove();
}

Selector 还提供了一系列和 select() 相关的方法:

  • int select()监控所有注册的 Channel,当它们中间有需要处理的 IO 操作时,该方法返回,并将对应的 SelectionKey 加入被选择的 SelectionKey 集合中,该方法返回这些 Channel 的数量。

  • int select(long timeout)可以设置超时时长的 select() 操作。

  • int selectNow()执行一个立即返回的 select() 操作,相对于无参数的 select() 方法而言,该方法不会阻塞线程。

  • Selector wakeup()使一个还未返回的 select() 方法立刻返回。

使用 Selector 实现网络读写的简单示例:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;public class NioSelectorExample {public static void main(String[] args) {try {ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();serverSocketChannel.configureBlocking(false);serverSocketChannel.socket().bind(new InetSocketAddress(8080));Selector selector = Selector.open();// 将 ServerSocketChannel 注册到 Selector 并监听 OP_ACCEPT 事件serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);while (true) {int readyChannels = selector.select();if (readyChannels == 0) {continue;}Set<SelectionKey> selectedKeys = selector.selectedKeys();Iterator<SelectionKey> keyIterator = selectedKeys.iterator();while (keyIterator.hasNext()) {SelectionKey key = keyIterator.next();if (key.isAcceptable()) {// 处理连接事件ServerSocketChannel server = (ServerSocketChannel) key.channel();SocketChannel client = server.accept();client.configureBlocking(false);// 将客户端通道注册到 Selector 并监听 OP_READ 事件client.register(selector, SelectionKey.OP_READ);} else if (key.isReadable()) {// 处理读事件SocketChannel client = (SocketChannel) key.channel();ByteBuffer buffer = ByteBuffer.allocate(1024);int bytesRead = client.read(buffer);if (bytesRead > 0) {buffer.flip();System.out.println("收到数据:" +new String(buffer.array(), 0, bytesRead));// 将客户端通道注册到 Selector 并监听 OP_WRITE 事件client.register(selector, SelectionKey.OP_WRITE);} else if (bytesRead < 0) {// 客户端断开连接client.close();}} else if (key.isWritable()) {// 处理写事件SocketChannel client = (SocketChannel) key.channel();ByteBuffer buffer = ByteBuffer.wrap("Hello, Client!".getBytes());client.write(buffer);// 将客户端通道注册到 Selector 并监听 OP_READ 事件client.register(selector, SelectionKey.OP_READ);}keyIterator.remove();}}} catch (IOException e) {e.printStackTrace();}}
}

在示例中,我们创建了一个简单的服务器,监听 8080 端口,使用 Selector 处理连接、读取和写入事件。当接收到客户端的数据时,服务器将读取数据并将其打印到控制台,然后向客户端回复 "Hello, Client!"。

四、NIO 零拷贝

零拷贝是提升 IO 操作性能的一个常用手段,像 ActiveMQ、Kafka 、RocketMQ、QMQ、Netty 等顶级开源项目都用到了零拷贝。

零拷贝是指计算机执行 IO 操作时,CPU 不需要将数据从一个存储区域复制到另一个存储区域,从而可以减少上下文切换以及 CPU 的拷贝时间。也就是说,零拷贝主要解决操作系统在处理 I/O 操作时频繁复制数据的问题。零拷贝的常见实现技术有: mmap+writesendfilesendfile + DMA gather copy

下图展示了各种零拷贝技术的对比图:

CPU 拷贝DMA 拷贝系统调用上下文切换
传统方法22read+write4
mmap+write12mmap+write4
sendfile12sendfile2
sendfile + DMA gather copy02sendfile2

可以看出,无论是传统的 I/O 方式,还是引入了零拷贝之后,2 次 DMA(Direct Memory Access) 拷贝是都少不了的。因为两次 DMA 都是依赖硬件完成的。零拷贝主要是减少了 CPU 拷贝及上下文的切换。

Java 对零拷贝的支持:

  • MappedByteBuffer 是 NIO 基于内存映射(mmap)这种零拷⻉⽅式的提供的⼀种实现,底层实际是调用了 Linux 内核的 mmap 系统调用。它可以将一个文件或者文件的一部分映射到内存中,形成一个虚拟内存文件,这样就可以直接操作内存中的数据,而不需要通过系统调用来读写文件。
  • FileChanneltransferTo()/transferFrom()是 NIO 基于发送文件(sendfile)这种零拷贝方式的提供的一种实现,底层实际是调用了 Linux 内核的 sendfile系统调用。它可以直接将文件数据从磁盘发送到网络,而不需要经过用户空间的缓冲区。关于FileChannel的用法可以看看这篇文章:Java NIO 文件通道 FileChannel 用法。

代码示例:

private void loadFileIntoMemory(File xmlFile) throws IOException {FileInputStream fis = new FileInputStream(xmlFile);// 创建 FileChannel 对象FileChannel fc = fis.getChannel();// FileChannel.map() 将文件映射到直接内存并返回 MappedByteBuffer 对象MappedByteBuffer mmb = fc.map(FileChannel.MapMode.READ_ONLY, 0, fc.size());xmlFileBuffer = new byte[(int)fc.size()];mmb.get(xmlFileBuffer);fis.close();
}

总结

这篇文章我们主要介绍了 NIO 的核心知识点,包括 NIO 的核心组件和零拷贝。

如果我们需要使用 NIO 构建网络程序的话,不建议直接使用原生 NIO,编程复杂且功能性太弱,推荐使用一些成熟的基于 NIO 的网络编程框架比如 Netty。Netty 在 NIO 的基础上进行了一些优化和扩展比如支持多种协议、支持 SSL/TLS 等等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/476937.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端-react(class组件和Hooks)

文章主要以Hooks为主,部分涉及class组件方法进行对比 一.了解react 1.管理组件的方式 在React中&#xff0c;有两种主要的方式来管理组件的状态和生命周期&#xff1a;Class 组件和 Hooks。 Class 组件&#xff1a; Class 组件是 React 最早引入的方式&#xff0c;它是基于…

python爬虫-下载高德地图区域(省,市,区)

python爬虫&#xff0c;用于下载&#xff1a;https://datav.aliyun.com/portal/school/atlas/area_selector 的中国地图及其下钻省市区的json文件。在echarts或者leaflet展示。 可能会少几个市区的full.json数据&#xff0c;api的xml调不通&#xff0c;可以手动去 https://data…

uni-app 修改复选框checkbox选中后背景和字体颜色

编写css&#xff08;注意&#xff1a;这个样式必须写在App.vue里&#xff09; /* 复选框 */ /* 复选框-圆角 */ checkbox.checkbox-round .wx-checkbox-input, checkbox.checkbox-round .uni-checkbox-input {border-radius: 100rpx; } /* 复选框-背景颜色 */ checkbox.checkb…

MacOS下的Opencv3.4.16的编译

前言 MacOS下编译opencv还是有点麻烦的。 1、Opencv3.4.16的下载 注意&#xff0c;我们使用的是Mac&#xff0c;所以ios pack并不能使用。 如何嫌官网上下载比较慢的话&#xff0c;可以考虑在csdn网站上下载&#xff0c;应该也是可以找到的。 2、cmake的下载 官网的链接&…

内外网交换过程中可能遇到的安全风险有哪些?

在数字化时代&#xff0c;企业内外网之间的数据交换变得日益频繁。然而&#xff0c;这一过程中的安全风险和效率问题也日益凸显。我们将探讨内外网交换可能遇到的安全风险&#xff0c;并介绍镭速内外网交换系统如何有效应对这些挑战。 内外网交换过程中的五大安全风险 数据泄露…

Redis的过期删除策略和内存淘汰机制以及如何保证双写的一致性

Redis的过期删除策略和内存淘汰机制以及如何保证双写的一致性 过期删除策略内存淘汰机制怎么保证redis双写的一致性?更新策略先删除缓存后更新数据库先更新数据库后删除缓存如何选择&#xff1f;如何保证先更新数据库后删除缓存的线程安全问题&#xff1f; 过期删除策略 为了…

GESP2023年9月认证C++四级( 第三部分编程题(1-2))

编程题1&#xff08;string&#xff09;参考程序&#xff1a; #include <iostream> using namespace std; long long hex10(string num,int b) {//int i;long long res0;for(i0;i<num.size();i) if(num[i]>0&&num[i]<9)resres*bnum[i]-0;else //如果nu…

VSCode汉化教程【简洁易懂】

我们安装完成后默认是英文界面。 找到插件选项卡&#xff0c;搜索“Chinese”&#xff0c;找到简体&#xff08;更具你的需要&#xff09;&#xff08;Microsoft提供&#xff09;Install。 安装完成后选择Change Language and Restart。

java学习-集合

为什么有集合&#xff1f; 自动扩容 数组&#xff1a;长度固定&#xff0c;可以存基本数据类型和引用数据类型 集合&#xff1a;长度可变&#xff0c;可以存引用数据类型&#xff0c;基本数据类型的话需要包装类 ArrayList public class studentTest {public static void m…

MATLAB GUI设计(基础)

一、目的和要求 1、熟悉和掌握MATLAB GUI的基本控件的使用及属性设置。 2、熟悉和掌握通过GUIDE创建MATLAB GUI的方法。 3、熟悉和掌握MATLAB GUI的菜单、对话框及文件管理框的设计。 4、熟悉和掌握MATLAB GUI的M文件编写。 5、了解通过程序创建MATLAB GUI的方法。 二、内…

【工具变量】中国省级及地级市保障性住房数据集(2010-2023年)

一、测算方式&#xff1a;参考顶刊《世界经济》蔡庆丰&#xff08;2024&#xff09;老师的研究&#xff0c;具体而言&#xff0c;本文将土地用途为经济适用住房用地、廉租住房用地、公共租赁住房用地、共有产权住房用 地等类型的土地定义为具有保障性住房用途的土地。根据具有保…

第T8周:Tensorflow实现猫狗识别(1)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 具体实现 &#xff08;一&#xff09;环境 语言环境&#xff1a;Python 3.10 编 译 器: PyCharm 框 架: &#xff08;二&#xff09;具体步骤 from absl.l…

Day 18

修建二叉搜索树 link&#xff1a;669. 修剪二叉搜索树 - 力扣&#xff08;LeetCode&#xff09; 思路分析 注意修剪的时候要考虑到全部的节点&#xff0c;即搜到到限定区间小于左值或者大于右值时还需要检查当前不符合区间大小节点的右子树/左子树&#xff0c;不能直接返回n…

核间通信-Linux下RPMsg使用与源码框架分析

目录 1 文档目的 2 相关概念 2.1 术语 2.2 RPMsg相关概念 3 RPMsg核间通信软硬件模块框架 3.1 硬件原理 3.2 软件框架 4 使用RPMsg进行核间通信 4.1 RPMsg通信建立 4.1.1 使用名称服务建立通信 4.1.2 不用名称服务 4.2 RPMsg应用过程 4.3 应用层示例 5 RPMsg内核…

常用Adb 命令

# 连接设备 adb connect 192.168.10.125# 断开连接 adb disconnect 192.168.10.125# 查看已连接的设备 adb devices# 安装webview adb install -r "D:\webview\com.google.android.webview_103.0.5060.129-506012903_minAPI23(arm64-v8a,armeabi-v7a)(nodpi)_apkmirror.co…

高质量代理池go_Proxy_Pool

高质量代理池go_Proxy_Pool 声明&#xff01; 学习视频来自B站up主 ​泷羽sec​​ 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章 笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以…

有关博客博客系统的测试报告 --- 初次进行项目测试篇

文章目录 前言一、博客系统的项目背景二、博客系统的项目简介1.后端功能1.1 用户管理1.2 博客管理1.3 权限管理 2.前端功能2.1 用户界面 测试计划测试工具、环境设计的测试动作功能测试访问博客登录页面博客首页测试博客详情页博客编辑页 自动化测试自动化测试用例自动化测试脚…

物业管理系统的设计和实现

一、项目背景 物业管理系统在现代城市化进程中起着至关重要的作用。 随着居民生活水平的提高和信息技术的迅猛发展&#xff0c;传统的物业管理模式已不能满足业主和管理者的需求。 为了提高管理效率、降低运营成本、提升服务质量&#xff0c;设计并实现一个集成化、智能化的物业…

JDBC编程---Java

目录 一、数据库编程的前置 二、Java的数据库编程----JDBC 1.概念 2.JDBC编程的优点 三.导入MySQL驱动包 四、JDBC编程的实战 1.创造数据源&#xff0c;并设置数据库所在的位置&#xff0c;三条固定写法 2.建立和数据库服务器之间的连接&#xff0c;连接好了后&#xff…

快速图像识别:落叶植物叶片分类

1.背景意义 研究背景与意义 随着全球生态环境的变化&#xff0c;植物的多样性及其在生态系统中的重要性日益受到关注。植物叶片的分类不仅是植物学研究的基础&#xff0c;也是生态监测、农业管理和生物多样性保护的重要环节。传统的植物分类方法依赖于人工观察和专家知识&…