神经网络(系统性学习二):单层神经网络(感知机)

此前篇章:

神经网络中常用的激活函数

神经网络(系统性学习一):入门篇


单层神经网络(又叫感知机)

单层网络是最简单的全连接神经网络,它仅有输入层和输出层,没有隐藏层。即,网络的所有输入直接影响到输出。

结构:输入层 → 输出层

特点

  • 只适用于线性可分问题。即,单层网络只能学习并解决线性可分的问题(例如,二维平面上的两类点可以通过一条直线分开)。

  • 单层感知机的输出由输入的加权和经过激活函数(如sigmoid)产生。

优点:结构简单,计算量较小。

缺点:无法解决非线性问题,如XOR问题(异或问题)。因为单层网络只能找到线性决策边界,无法处理更复杂的模式。


详细讲解

感知机最初设计用于二分类问题,用来判断输入样本属于正类还是负类。

1、模型结构:

感知机的输入:

  • 输入特征向量:\mathbf{x} = [x_1, x_2, \dots, x_n]^\top

  • 权重向量:\mathbf{w} = [w_1, w_2, \dots, w_n]^\top

  • 偏置:b

通常,我们还有一个0项权重,或者说常数项w_{0} ,即x_{0}=1对应的权重。这里我们忽略这一非重点的常数项。

加权和:感知机通过将输入特征与权重进行加权求和,再加上偏置项,得到一个总和值。

z = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b

激活函数:通常是符号函数sign(z)

感知机模型的输出为:

2、基本步骤

感知机的学习过程是个迭代优化过程,通过不断调整权重和偏置,使模型能够正确分类训练数据。

1、初始化权重和偏置:

在训练开始前,感知机的权重 w1,w2,...,wn 和偏置 b 通常被初始化为小的随机值,或者初始化为零。学习率 η也是一个超参数,通常设置为一个小的正数,如 0.01 或 0.1。

2、对每一个样本计算加权和:

3、通过激活函数预测样本分类标签y_{\text{pred}}^{(i)}

4、误差计算与权重更新(反向传播):

对于每一个样本,如果预测分类结果正确,则不更新权重和偏置。否则利用预测误差更新权重和偏置:

这里的更新规则是通过误差(y^{(i)} - y_{\text{pred}}^{(i)})来调整权重和偏置。如果分类正确(即 y^{(i)} = y_{\text{pred}}^{(i)},则权重和偏置不发生变化。

5、迭代过程(epoch)

对于每个训练样本,逐个计算加权和、应用激活函数、更新权重和偏置。每一轮迭代,会对所有训练样本进行一次更新。通常需要多轮迭代才能训练出一个合适的模型。

停止条件为:

  • 达到最大迭代次数;

  • 在某一轮迭代中没有发生任何权重更新(即所以样本都分类正确)。


具体例子

假设我们有以下一个简单的训练数据集。

初始化时设定权重 w1=0.1,w2=0.2,偏置 b=0,学习率 η=0.01。

第一轮迭代:

对于样本1,计算加权和:z=0.1×2+0.2×3+0=0.8。 激活函数输出 y_{\text{pred}} = 1,与真实标签一致,因此不更新权重。

对于样本2,计算加权和:z=0.1×1+0.2×1+0=0.3。激活函数输出 y_{\text{pred}} = 1,但真实标签是 -1,所以发生分类错误。更新权重和偏置:

w_1 \leftarrow 0.1 + 0.01 \times (-1 - 1) \times 1 = 0.08

w_2 \leftarrow 0.2 + 0.01 \times (-1 - 1) \times 1 = 0.18

b \leftarrow 0 + 0.01 \times (-1 - 1) = -0.02

对于样本3,计算加权和:z=0.08×3+0.18×1−0.02=0.4。激活函数输出 y_{\text{pred}} = 1,与真实标签一致,因此不更新权重。

第二轮迭代:

...

一直迭代

直到所有样本分类正确或达到停止条件,得到了我们要的 w 和 b

#  若文章对大噶有帮助的话,点个赞支持一下叭!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/477466.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

后端:事务

文章目录 1. 事务2. Spring 单独配置DataSource3. 利用JdbcTemplate操作数据库4. 利用JdbcTemplate查询数据5. Spring 声明式事务6. 事务的隔离级别6.1 脏读6.2 不可重复读6.3 幻读6.4 不可重复读和幻读的区别6.5 三种方案的比较 7. 事务的传播特性8. 设置事务 只读(readOnly)9…

Fakelocation Server服务器/专业版 Windows11

前言:需要Windows11系统 Fakelocation开源文件系统需求 Windows11 | Fakelocation | 任务一 打开 PowerShell(以管理员身份)命令安装 Chocolatey Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProto…

MySQL系列之身份鉴别(安全)

导览 前言Q:如何保障MySQL数据库身份鉴别的有效性一、有效性检查1. 用户唯一2. 启用密码验证3. 是否存在空口令用户4. 是否启用口令复杂度校验5. 是否设置口令的有效期6. 是否限制登录失败尝试次数7. 是否设置(超过尝试次数)锁定的最小时长8.…

MySQL面试题补

内连接和外连接的区别: ○1.功能和用法不同:内连接是连接两表都满足情况的数据;而外连接是以一边的表为主表,另一个表只显示匹配的行; ○2.用途:内连接一般是用于检索不同表需要根据共同的列值进行匹配的&a…

线程(三)【线程互斥(下)】

目录 4. 互斥锁4.1 解决数据不一致问题 5. 锁的原理5.1 加锁5.2 解锁 6. 可重入 vs 线程安全 4. 互斥锁 NAMEpthread_mutex_destroy, pthread_mutex_init - destroy and initialize a mutex // 创建、释放锁SYNOPSIS#include <pthread.h>// pthread_mutex_t: 线程库提供…

如何使用AWS Lambda构建一个云端工具(超详细)

首发地址&#xff08;欢迎大家访问&#xff09;&#xff1a;如何使用AWS Lambda构建一个云端工具&#xff08;超详细&#xff09; 1 前言 1.1 无服务器架构 无服务器架构&#xff08;Serverless Computing&#xff09;是一种云计算服务模型&#xff0c;它允许开发者构建和运行…

网络爬虫总结与未来方向

通过深入学习和实际操作&#xff0c;网络爬虫技术从基础到进阶得以系统掌握。本节将全面总结关键内容&#xff0c;并结合前沿技术趋势与最新资料&#xff0c;为开发者提供实用性强的深度思考和方案建议。 1. 网络爬虫技术发展趋势 1.1 趋势一&#xff1a;高性能分布式爬虫 随…

实验十三 生态安全评价

1 背景及目的 生态安全是生态系统完整性和健康性的整体反映&#xff0c;完整健康的生态系统具有调节气候净化污染、涵养水源、保持水土、防风固沙、减轻灾害、保护生物多样性等功能。维护生态安全对于人类生产、生活、健康及可持续发展至关重要。随着城市化进程的不断推进&…

archlinux安装waydroid

目录 参考资料 注意 第一步切换wayland 第二步安装binder核心模组 注意 开始安装 AUR安裝Waydroid 启动waydroid 设置网络&#xff08;正常的可以不看&#xff09; 注册谷歌设备 安装Arm转译器 重启即可 其他 参考资料 https://ivonblog.com/posts/archlinux-way…

鸿蒙NEXT开发案例:随机数生成

【引言】 本项目是一个简单的随机数生成器应用&#xff0c;用户可以通过设置随机数的范围和个数&#xff0c;并选择是否允许生成重复的随机数&#xff0c;来生成所需的随机数列表。生成的结果可以通过点击“复制”按钮复制到剪贴板。 【环境准备】 • 操作系统&#xff1a;W…

【Android】Service使用方法:本地服务 / 可通信服务 / 前台服务 / 远程服务(AIDL)

1 本地Service 这是最普通、最常用的后台服务Service。 1.1 使用步骤 步骤1&#xff1a;新建子类继承Service类&#xff1a;需重写父类的onCreate()、onStartCommand()、onDestroy()和onBind()方法步骤2&#xff1a;构建用于启动Service的Intent对象步骤3&#xff1a;调用st…

【LeetCode热题100】队列+宽搜

这篇博客是关于队列宽搜的几道题&#xff0c;主要包括N叉树的层序遍历、二叉树的锯齿形层序遍历、二叉树最大宽度、在每个数行中找最大值。 class Solution { public:vector<vector<int>> levelOrder(Node* root) {vector<vector<int>> ret;if(!root) …

双因子认证:统一运维平台安全管理策略

01双因子认证概述 双因子认证&#xff08;Two-Factor Authentication&#xff0c;简称2FA&#xff09;是一种身份验证机制&#xff0c;它要求用户提供两种不同类型的证据来证明自己的身份。这通常包括用户所知道的&#xff08;如密码&#xff09;、用户所拥有的&#xff08;如…

Apple Vision Pro开发002-新建项目配置

一、新建项目 可以选择默认的&#xff0c;也可以选择Universal 3D 二、切换打包平台 注意选择Target SDK为Devices SDk&#xff0c;这种适配打包到真机调试 三、升级新的Input系统 打开ProjectSettings&#xff0c;替换完毕之后引擎会重启 四、导入PolySpatial 修改上图红…

瑞佑液晶控制芯片RA6807系列介绍 (三)软件代码详解 Part.10(让PNG图片动起来)完结篇

RA6807是RA8876M的缩小版&#xff0c;具备RA8876M的所有功能&#xff0c;只将MCU控制接口进行缩减&#xff0c;仅保留SPI-3和I2C接口&#xff0c;其它功能基本相同。 该芯片最大可控制854x600的分辨率&#xff0c;内建64Mbits显存&#xff0c;多个图层&#xff0c;使用起来相当…

机器人SLAM建图与自主导航:从基础到实践

前言 这篇文章我开始和大家一起探讨机器人SLAM建图与自主导航 &#xff0c;在前面的内容中&#xff0c;我们介绍了差速轮式机器人的概念及应用&#xff0c;谈到了使用Gazebo平台搭建仿真环境的教程&#xff0c;主要是利用gmapping slam算法&#xff0c;生成一张二维的仿真环境…

一篇保姆式centos/ubuntu安装docker

前言&#xff1a; 本章节分别演示centos虚拟机&#xff0c;ubuntu虚拟机进行安装docker。 上一篇介绍&#xff1a;docker一键部署springboot项目 一&#xff1a;centos 1.卸载旧版本 yum remove docker docker-client docker-client-latest docker-common docker-latest doc…

Robot | 用 RDK 做一个小型机器人(更新中)

目录 前言架构图开发过程摄像头模型转换准备校准数据使用 hb_mapper makertbin 工具转换模型 底版开发 结语 前言 最近想开发一个小型机器人&#xff0c;碰巧看到了 RDK x5 发布了&#xff0c;参数对于我来说非常合适&#xff0c;就买了一块回来玩。 外设也是非常丰富&#xf…

如何在 UniApp 中实现 iOS 版本更新检测

随着移动应用的不断发展&#xff0c;保持应用程序的更新是必不可少的&#xff0c;这样用户才能获得更好的体验。本文将帮助你在 UniApp 中实现 iOS 版的版本更新检测和提示&#xff0c;适合刚入行的小白。我们将分步骤进行说明&#xff0c;每一步所需的代码及其解释都会一一列出…

软件工程导论 选填题知识点总结

一 原型化方法是一种动态定义需求的方法&#xff0c;提供完整定义的需求不是原型化方法的特征&#xff0c;其特征包括尽快建立初步需求、简化项目管理以及加强用户参与和决策。 软件危机的表现包括用户对已完成的软件系统不满意的现象经常发生、软件产品的质量往往靠不住、软件…