【通俗理解】边际化技巧在概率论中的应用——从公式到实例

【通俗理解】边际化技巧在概率论中的应用——从公式到实例

关键词提炼

#边际化技巧 #概率论 #联合概率 #条件概率 #积分计算 #概率分布 #贝叶斯推断

第一节:边际化技巧的类比与核心概念【尽可能通俗】

边际化技巧,就像是你在一个复杂的概率迷宫中,找到了一条通往出口的“捷径”。
它让你能够从一个包含多个变量的联合概率分布中,提炼出你关心的那个变量的概率分布,就像是从一堆杂乱的信息中,提取出你最想要的那部分信息。

第二节:边际化技巧的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
边际化技巧通过积分或求和,从联合概率分布中得到某个变量的边缘概率分布。像是从一堆混合的颜色中,提取出你想要的纯色。
联合概率多个变量同时发生的概率。像是同时掷出两个骰子,得到特定点数的概率。
条件概率在给定某些变量值的情况下,另一个变量发生的概率。像是知道今天下雨,那么明天也下雨的概率是多少。

2.2 优势与劣势

方面描述
优势能够简化复杂的概率计算,提取出关键信息,为决策提供依据。
劣势计算过程可能较为复杂,特别是当涉及多个变量和高维空间时。

2.3 与概率论的类比

边际化技巧在概率论中就像是一把“筛子”,它能够帮助我们从复杂的联合概率分布中筛选出我们关心的那个变量的概率分布,从而让我们更加清晰地了解这个变量的行为。

第三节:公式探索与推演运算

3.1 边际化技巧的基本公式

对于离散变量,边际化技巧的基本公式为:

P ( X ) = ∑ Y P ( X , Y ) P(X) = \sum_{Y} P(X, Y) P(X)=YP(X,Y)

对于连续变量,边际化技巧的基本公式为:

p ( x ) = ∫ p ( x , y ) d y p(x) = \int p(x, y) dy p(x)=p(x,y)dy

其中, P ( X , Y ) P(X, Y) P(X,Y) p ( x , y ) p(x, y) p(x,y) 是联合概率分布, P ( X ) P(X) P(X) p ( x ) p(x) p(x) 是边缘概率分布。

3.2 具体实例与推演

假设我们有两个离散变量 X X X Y Y Y,它们的联合概率分布如下表所示:

X / Y X/Y X/Y01
00.20.1
10.30.4

我们想要计算 P ( X = 0 ) P(X=0) P(X=0),即 X X X 取值为 0 的概率。根据边际化技巧,我们可以将 Y Y Y 的所有可能取值(0 和 1)对应的联合概率相加,得到:

P ( X = 0 ) = P ( X = 0 , Y = 0 ) + P ( X = 0 , Y = 1 ) = 0.2 + 0.1 = 0.3 P(X=0) = P(X=0, Y=0) + P(X=0, Y=1) = 0.2 + 0.1 = 0.3 P(X=0)=P(X=0,Y=0)+P(X=0,Y=1)=0.2+0.1=0.3

同样地,我们可以计算 P ( X = 1 ) P(X=1) P(X=1)

对于连续变量的情况,假设我们有两个连续变量 x x x y y y,它们的联合概率密度函数为 p ( x , y ) p(x, y) p(x,y)。我们想要计算 x x x 的边缘概率密度函数 p ( x ) p(x) p(x),可以通过对 y y y 进行积分来实现:

p ( x ) = ∫ − ∞ ∞ p ( x , y ) d y p(x) = \int_{-\infty}^{\infty} p(x, y) dy p(x)=p(x,y)dy

3.3 边际化技巧在贝叶斯推断中的应用

在贝叶斯推断中,边际化技巧常用于计算后验概率分布。例如,在给定观测数据 y y y 的情况下,我们想要计算参数 θ \theta θ 的后验概率分布 p ( θ ∣ y ) p(\theta | y) p(θy)。根据贝叶斯公式,我们有:

p ( θ ∣ y ) = p ( y ∣ θ ) p ( θ ) p ( y ) p(\theta | y) = \frac{p(y | \theta) p(\theta)}{p(y)} p(θy)=p(y)p(yθ)p(θ)

其中, p ( y ) p(y) p(y) 是观测数据的边缘概率分布,可以通过对联合概率分布 p ( y , θ ) p(y, \theta) p(y,θ) 进行边际化得到:

p ( y ) = ∫ p ( y , θ ) d θ = ∫ p ( y ∣ θ ) p ( θ ) d θ p(y) = \int p(y, \theta) d\theta = \int p(y | \theta) p(\theta) d\theta p(y)=p(y,θ)dθ=p(yθ)p(θ)dθ

第四节:相似公式比对

公式/技巧共同点不同点
条件概率公式都涉及多个变量的概率关系。条件概率公式用于计算在给定某些变量值的情况下,另一个变量发生的概率;而边际化技巧用于从联合概率分布中提取边缘概率分布。
全概率公式都涉及对概率的求和或积分。全概率公式用于计算某个事件发生的总概率,考虑了所有可能的原因;而边际化技巧用于从联合概率分布中提取特定变量的概率分布。

第五节:核心代码与可视化

由于边际化技巧的应用通常涉及具体的概率分布和计算,这里我们提供一个简化的Python代码示例,用于演示如何计算离散变量的边缘概率分布。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# 定义联合概率分布
joint_prob = np.array([[0.2, 0.1],[0.3, 0.4]])# 计算边缘概率分布
marginal_prob_X = np.sum(joint_prob, axis=1)# 可视化结果
sns.set_theme(style="whitegrid")
plt.bar(['X=0', 'X=1'], marginal_prob_X, color='blue')
plt.xlabel('X')
plt.ylabel('Probability')
plt.title('Marginal Probability Distribution of X')
plt.show()# 打印详细的输出信息
print(f"Joint Probability Distribution:\n{joint_prob}")
print(f"Marginal Probability Distribution of X:\n{marginal_prob_X}")
输出内容描述
联合概率分布的图示显示了 X X X Y Y Y 的联合概率分布。
边缘概率分布的图示和详细输出信息显示了 X X X 的边缘概率分布,并提供了详细的输出信息。

“边际化技巧就像是从一堆混合的颜色中,提取出你想要的纯色。” 这句话生动地描述了边际化技巧的核心作用,即从复杂的联合概率分布中提取出我们关心的那个变量的概率分布。

参考文献

  1. Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127-138.
  2. Parr, T., & Friston, K. J. (2019). The discrete and continuous brain: From decisions to dynamics. Neural Computation, 31(7), 1340-1380. (注:这两篇参考文献虽然与边际化技巧不直接相关,但提供了概率论和贝叶斯推断在神经科学中的应用背景,有助于理解边际化技巧在实际问题中的应用价值。)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/477940.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】sql注入相关内容

【MySQL】sql注入相关内容 1. 为什么使用sql注入的时候,url传值的时候要使用–而不是– 使用–进行注释的时候需要在后面加一个空格才可以被认为是注释,url传值的过程中会将空格自动忽略,使用则可以在传输中保留为空格符号。(同…

shell脚本(完结)

声明:学习视频来自b站up主 泷羽sec,如涉及侵权马上删除文章 感谢泷羽sec 团队的教学 视频地址:shell编程(完结)_哔哩哔哩_bilibili 本文主要讲解不同shell脚本中的相互调用以及输入输出重定向操作。 一、不同脚本之间…

【bug】使用transformers训练二分类任务时,训练损失异常大

使用transformers训练二分类任务时,训练损失异常大 问题分析 问题 training_loss异常大,在二分类损失中,收敛在1~2附近,而eval_loss却正常(小于0.5) 分析 参考: Bug in gradient accumulation…

深入解析 EasyExcel 组件原理与应用

✨深入解析 EasyExcel 组件原理与应用✨ 官方:EasyExcel官方文档 - 基于Java的Excel处理工具 | Easy Excel 官网 在日常的 Java 开发工作中,处理 Excel 文件的导入导出是极为常见的需求。 今天,咱们就一起来深入了解一款非常实用的操作 Exce…

Gradio学习笔记记录

安装指令:pip install gradio方法介绍 Interface》用于构建一些简单的页面,可以直接用这个指令搞定 形式》接收三个参数分别为处理函数、输入、输出三部分,呈现一般左/上为输入,右或下为输出 fn:将用户界面 &#xff0…

养老院管理系统+小程序项目需求分析文档

智慧综合养老服务平台是以业务为牵引、场景为驱动,围绕“老人”业务域,持续沉淀和打磨形成适应不同养老业务发展需要的业务能力,推动业务模式升级,为养老服务提供数字化解决方案,并依托实体站点与养老机构实现线上线下…

React的基本知识:事件监听器、Props和State的区分、改变state的方法、使用回调函数改变state、使用三元运算符改变state

这篇教学文章涵盖了大量的React基本知识。 包括: 事件监听器Props和State的区分改变state的方法使用回调函数改变state使用三元运算符改变state处理state中的数组处理state中的object条件渲染 &&条件渲染 三元运算符React中的forms 1. Event Listeners 在…

repmgr安装及常用运维指令

简介 repmgr 由 EDB 与其他个人和组织的贡献一起开发,安装部署相对较为简单 安装 repmgr官网上传对应的安装到服务器上 安装前/etc/hosts IP映射、始终同步、免密通信本文忽略 repmgr的安装相对较为简单,目前repmgr-5仅仅支持到postgresql-15 postgresql必要参数…

opencv-python 分离边缘粘连的物体(距离变换)

import cv2 import numpy as np# 读取图像,这里添加了判断图像是否读取成功的逻辑 img cv2.imread("./640.png") # 灰度图 gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 高斯模糊 gray cv2.GaussianBlur(gray, (5, 5), 0) # 二值化 ret, binary cv2…

SATA接口不通分析案例分享

问题: 反馈有台NVR的某个接口SATA不通(共有4个SATA接口,采用SATA HUB JMB575),挂载硬盘不上。 分析: 1、直接对换问题口SATA1与正常口SATA2的SATA数据线,SATA1口还是异常,挂在不上…

【Web前端】如何构建简单HTML表单?

HTML 表单是 Web 开发中非常重要的组成部分。它们是与用户交互的主要方式,能够收集用户输入的数据。表单的灵活性使它们成为 HTML 中最复杂的结构之一,但若使用正确的结构和元素,可以确保其可用性和无障碍性。 表单的基本结构 HTML 表单使用…

Flutter:AnimatedIcon图标动画,自定义Icon通过延时Interval,实现交错式动画

配置vsync&#xff0c;需要实现一下with SingleTickerProviderStateMixinclass _MyHomePageState extends State<MyHomePage> with SingleTickerProviderStateMixin{// late延迟初始化 AnimationControllerlate AnimationController _controller;overridevoid initStat…

PyQt学习笔记

一.PyQt5的安装 当我们安装好开发环境后&#xff0c;打开pycharm在其设置里面点击按钮自动安装即可。 安装完成后我们会在这里面看到这几个东西说明安装成功了。 二.PyQt5 GUI程序框架 1.一个简单的PyQt5应用程序 首先我们用pycharm创建一个demo.py的文件。 我们创建文件为s…

HTML5好看的音乐播放器多种风格(附源码)

文章目录 1.设计来源1.1 音乐播放器风格1效果1.2 音乐播放器风格2效果1.3 音乐播放器风格3效果1.4 音乐播放器风格4效果1.5 音乐播放器风格5效果 2.效果和源码2.1 动态效果2.2 源代码 源码下载万套模板&#xff0c;程序开发&#xff0c;在线开发&#xff0c;在线沟通 作者&…

ReactPress(阮一峰推荐工具):一款基于Next.js的免费开源博客CMS系统

ReactPress Github项目地址&#xff1a;https://github.com/fecommunity/reactpress 欢迎Star。 此项目是用于构建博客网站的&#xff0c;包含前台展示、管理后台和后端。 此项目是基于 React antd NestJS NextJS MySQL 的&#xff0c;项目已经开源&#xff0c;项目地址在 …

pytorch自定义算子导出onnx

文章目录 1、为什么要自定义算子&#xff1f;2、如何自定义算子3、自定义算子导出onnx4、example1、重写一个pytorch 自定义算子&#xff08;实现自定义激活函数&#xff09;2、现有算子上封装pytorch 自定义算子&#xff08;实现动态放大超分辨率模型&#xff09; 1、为什么要…

构建高效在线教育:SpringBoot课程管理系统

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理在线课程管理系统的相关信息成为必然。开发…

CSS3新特性——字体图标、2D、3D变换、过渡、动画、多列布局

目录 一、Web字体 二、字体图标 三、2D变换 1.位移 &#xff08;1&#xff09;浮动 &#xff08;2&#xff09;相对定位 &#xff08;3)绝对定位和固定定位 &#xff08;4&#xff09;位移 用位移实现盒子的水平垂直居中 2.缩放 利用缩放调整字体到12px以下&#xff…

python Flask指定IP和端口

from flask import Flask, request import uuidimport json import osapp Flask(__name__)app.route(/) def hello_world():return Hello, World!if __name__ __main__:app.run(host0.0.0.0, port5000)

linux ubuntu的脚本知

目录 一、变量的引用 二、判断指定的文件是否存在 三、判断目录是否存在 四、判断最近一次命令执行是否成功 五、一些比较符号 六、"文件"的读取和写入 七、echo打印输出 八、ubuntu切换到root用户 N、其它可以参考的网址 脚本功能强大&#xff0c;用起来也…