PointNet++论文复现


✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨

🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。

我是Srlua小谢,在这里我会分享我的知识和经验。🎥

希望在这里,我们能一起探索IT世界的奥妙,提升我们的技能。🔮

记得先点赞👍后阅读哦~ 👏👏

📘📚 所属专栏:传知代码论文复现

欢迎访问我的主页:Srlua小谢 获取更多信息和资源。✨✨🌙🌙

​​

​​

目录

3D点云

什么是3D点云

为什么要使用3D点云(和计算机视觉比较)

点云数据演示效果

CloudCompare可视化工具

PointNet++模型

Set Abstraction Layer(集合抽象层)

Feature Propagation Layer(特征传播层)

多层感知机(MLP)

Symmetric Function(对称函数)

PointNet++核心代码

附件使用方式

3D点云数据下载

安装依赖

训练脚本

预测脚本

注:附件中不仅有点云分类代码,还有点云分割相关代码


本文所有资源均可在该地址处获取。

3D点云

什么是3D点云

3D点云是由大量空间中的点组成的数据集,这些点在三维坐标系统中具有X、Y和Z三个坐标值,用以表示物体或环境的形状和结构。每个点通常还包含额外的信息,如颜色、强度、法线等,这些信息可以帮助更准确地描述点云所代表的对象。3D点云数据可以通过各种技术获取,如激光扫描(LIDAR)、结构光扫描、立体摄像头以及其他3D感测设备。

点云数据在许多领域都有应用,包括但不限于测绘、建筑、制造业、自动驾驶汽车、文化遗产保护以及游戏开发等。它们为计算机提供了丰富的空间信息,使得能够进行高级的形状分析和模型重建。

为什么要使用3D点云(和计算机视觉比较)

3D点云在许多方面与传统的计算机视觉技术相比具有独特的优势,以下是一些主要的原因:

空间信息的丰富性
3D点云:提供了物体或场景的精确三维空间信息,可以准确地表示对象的形状、大小和位置。
计算机视觉:通常处理二维图像,虽然可以通过立体视觉等方法估计深度信息,但精度和分辨率通常不如3D点云。
精确度
3D点云:由于其三维特性,可以用于精确的尺寸测量和形状分析,这对于工程和制造领域尤为重要。
计算机视觉:在处理二维图像时可能会受到视角、光照变化和遮挡的影响,从而影响测量的精确度。
遮挡和视角问题
3D点云:可以从多个角度分析物体,即使在有遮挡的情况下也能较好地重建物体的完整结构。
计算机视觉:遮挡可能导致图像中关键信息的丢失,这可能会影响识别和分类的准确性。
复杂场景的理解
3D点云:能够更好地理解复杂的三维场景,例如城市环境或工业设施,这对于自动驾驶汽车和机器人导航等应用至关重要。
计算机视觉:在处理复杂场景时可能需要更多的预处理和假设,以简化场景并提取有用的信息。
交互性和沉浸感
3D点云:可以用于创建高度交互性和沉浸感的虚拟现实(VR)和增强现实(AR)体验。
计算机视觉:虽然也可以用于AR/VR,但通常缺乏3D点云所提供的详细和精确的空间信息。
总之,3D点云在处理三维空间数据方面具有独特的优势,它为计算机视觉带来了新的维度,使得在许多领域中的应用更加精确和有效。然而,3D点云技术也有其局限性,如数据处理和存储的要求较高,以及点云配准和降噪等预处理步骤的复杂性。不过,随着技术的进步,这些问题正在逐步得到解决

点云数据演示效果

CloudCompare可视化工具

下载地址:https://www.cloudcompare.org/


使用方式


可视化效果

PointNet++模型

Set Abstraction Layer(集合抽象层)

集合抽象层是PointNet++的核心模块,它通过迭代地采样点云中的点,并在每个采样点上应用PointNet来提取局部特征。

采样(Sampling):从输入点云中均匀或根据密度进行采样,选择一组点作为局部区域的中心。
分组(Grouping):对于每个采样点,根据距离选择它的邻近点形成一个小区域(称为“点集”或“组”),这些邻近点将用于提取局部特征。
局部特征提取(Local Feature Extraction):对每个分组应用PointNet或类似的结构,提取局部特征。这通常涉及到使用多层感知机(MLP)来处理每个点的坐标和特征,然后通过最大池化(max pooling)操作来获得一个固定大小的特征向量,该特征向量代表了该组的局部几何特征。

Feature Propagation Layer(特征传播层)

特征传播层用于将高层次的特征传播回原始点云的每个点,以细化特征表示。

插值(Interpolation):使用最近邻或基于距离的权重插值方法,将高层次的特征传播到低层次或原始点云的每个点。
特征更新(Feature Updating):在将高层次特征传播到原始点后,通过额外的MLP层更新每个点的特征,以融合局部和全局信息。

多层感知机(MLP)

在PointNet++中,多层感知机(MLP)用于对点云中的点进行特征提取。MLP是一个简单的前馈神经网络,它可以在每个点上进行多次非线性变换,以提取更复杂的特征。

Symmetric Function(对称函数)

PointNet++使用最大池化作为对称函数,以确保特征的排列不变性。这意味着无论点的顺序如何变化,提取的特征都是相同的。

  1. 输出层
    在网络的最后,通常会添加一个或多个全连接层(也称为密集层),以对提取的特征进行分类或分割任务。这些层将特征向量映射到最终的分类标签或每个点的分割标签

PointNet++核心代码

特征提取核心代码

class PointNetSetAbstraction(nn.Module):def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all):super(PointNetSetAbstraction, self).__init__()self.npoint = npointself.radius = radiusself.nsample = nsampleself.mlp_convs = nn.ModuleList()self.mlp_bns = nn.ModuleList()last_channel = in_channelfor out_channel in mlp:self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1))self.mlp_bns.append(nn.BatchNorm2d(out_channel))last_channel = out_channelself.group_all = group_alldef forward(self, xyz, points):"""Input:xyz: input points position data, [B, C, N]points: input points data, [B, D, N]Return:new_xyz: sampled points position data, [B, C, S]new_points_concat: sample points feature data, [B, D', S]"""xyz = xyz.permute(0, 2, 1)print(xyz.shape) # (B,1024,3)if points is not None:points = points.permute(0, 2, 1) #(B,1024,3)# new_xyz是从1024个点中根据最远原则选出的512个点# new_points是以这512个点为圆心,框出32个点 if self.group_all:new_xyz, new_points = sample_and_group_all(xyz, points)else:new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points)print(new_xyz.shape, new_points.shape) # (B,512,3),(B,512,32,6)# new_xyz: sampled points position data, [B, npoint, C]# new_points: sampled points data, [B, npoint, nsample, C+D]new_points = new_points.permute(0, 3, 2, 1) # [B, C+D, nsample,npoint]print(new_points.shape) # (B,6,32,512) 将特征维度转为in_channelfor i, conv in enumerate(self.mlp_convs):bn = self.mlp_bns[i]new_points =  F.relu(bn(conv(new_points)))print(new_points.shape) # 依次改变6的特征维度,不改变32,512new_points = torch.max(new_points, 2)[0] # (B,64,512)new_xyz = new_xyz.permute(0, 2, 1)return new_xyz, new_points

附件使用方式

3D点云数据下载

与原始的ModelNet40数据集相比,ModelNet40_normal_resampled数据集中的点云具有更均匀的采样密度,这使得数据集更适合于训练深度学习模型。
每个点云样本通常包含1024个点,这些点是从原始模型表面均匀采样的。
数据集中的每个点不仅包含三维坐标(x, y, z),还包含表面法线信息(nx, ny, nz)。这些法线信息有助于模型更好地理解点云的几何结构,对于某些3D识别任务来说是非常有用的。
modelnet40_normal_resampled下载地址:https://aistudio.baidu.com/datasetdetail/50045/0
将它放到附件的/data文件夹下

安装依赖

pip install -r requirements.txt

训练脚本

python train_classification.py

预测脚本

python test_classification.py

注:附件中不仅有点云分类代码,还有点云分割相关代码

 ​​

希望对你有帮助!加油!

若您认为本文内容有益,请不吝赐予赞同并订阅,以便持续接收有价值的信息。衷心感谢您的关注和支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/479481.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基础入门-Web应用架构类别源码类别镜像容器建站模版编译封装前后端分离

知识点: 1、基础入门-Web应用-搭建架构上的技术要点 2、基础入门-Web应用-源码类别上的技术要点 一、演示案例-架构类别-模版&分离&集成&容器&镜像 1、套用模版型 csdn / cnblog / github / 建站系统等 安全测试思路上的不同: 一般…

【JMeter性能测试框架篇】Win10下搭建JMeter+Influxdb+Grafana可视化性能测试监控平台

一、前言 平常使用jmeter进行性能测试时,工具自带的监控方式无法清晰直观的查看结果,给我们性能测试带来很多不便。因此我们需要搭建一个可视化性能测试监控平台来实时监控性能测试结果,这里我们采用JMeterInfluxdbGrafana开源免费框架来实现…

Qt桌面应用开发 第八天(综合项目一 飞翔的鸟)

目录 1.鸟类创建 2.鸟动画实现 3.鼠标拖拽 4.自动移动 5.右键菜单 6.窗口透明化 项目需求: 实现思路: 创建项目导入资源鸟类创建鸟动画实现鼠标拖拽实现自动移动右键菜单窗口透明化 1.鸟类创建 ①鸟类中包含鸟图片、鸟图片的最小值下标和最大值…

【Linux庖丁解牛】—软件安装vim!

目录 1、Linux中的软件安装 a、源码安装 b、软件包安装——rpm c、包管理器安装 包管理器的使用演示(Ubuntu) 2、Linux编辑器——vim 2.1 vim的基本概念 2.2 vim的基本操作 2.3 vim正常模式命令集 2.4 vim末行模式命令集 3、vim编辑器环境的一…

【数据结构与算法】排序算法总结:冒泡 / 快排 / 直接插入 / 希尔 / 简单选择 / 堆排序 / 归并排序

1 排序 1.1 冒泡 内排序的交换排序类别 1.1.1 普通实现 public class BubbleSort {/*** 基本的 冒泡排序*/public static void bubbleSort(int[] srcArray) {int i,j; // 用于存放数组下标int temp 0; // 用于交换数值时临时存放值for(i0;i<srcArray.length-1;i){// j …

如何构建SAAS项目

在后台使用JDBC方式动态创建用户输入的数据库信息&#xff08;库名、地址、用户名、密码&#xff09; 执行预先写好的sql文件&#xff08;如mybatis的scriptRunner)执行建表语句及插入基础数据&#xff08;管理员用户、普通用户&#xff09;

MQ高级2:MQ的可靠性

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…

transformer学习笔记-神经网络原理

在深度学习领域&#xff0c;transformer可以说是在传统的神经网络的基础上发展而来&#xff0c;着重解决传统神经网络长距离关联、顺序处理、模型表达能力等问题。 在学习transformer之前&#xff0c;我想&#xff0c;有必要先对传统的神经网络做简要的了解。 一、神经网络基本…

【前端】JavaScript中的字面量概念与应用详解

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;字面量1. 数字字面量2. 字符串字面量3. 布尔字面量4. 空值字面量&#xff08;null&#xff09;5. 对象字面量6. 数组字面量7. 正则表达式字面量8. 特殊值字面量9. 函数字…

字节跳动青训营刷题笔记19

问题描述 小R正在组织一个比赛&#xff0c;比赛中有 n 支队伍参赛。比赛遵循以下独特的赛制&#xff1a; 如果当前队伍数为 偶数&#xff0c;那么每支队伍都会与另一支队伍配对。总共进行 n / 2 场比赛&#xff0c;且产生 n / 2 支队伍进入下一轮。如果当前队伍数为 奇数&…

Python中的简单爬虫

文章目录 一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务器和浏览器的通讯流程3. 浏览器访问Web服务器的通讯流程4. 加载图片资源代码 二. 基于Web请求的FastAPI通用配置1. 目前Web服务器存在问题2. 基于Web请求的FastAPI通用配置 三. Python爬虫介绍1. 什…

【ArcGISPro】使用AI提取要素-土地分类(sentinel2)

Sentinel2数据处理 【ArcGISPro】Sentinel-2数据处理-CSDN博客 土地覆盖类型分类 处理结果

WinForm 的Combox下拉框 在FlatStyle.Flat的边框设置

现象&#xff1a;Combox在设置FlatStyle.Flat时边框不见了 效果&#xff1a; 解决问题思路封装新控件&#xff1a; public class DBorderComboBox : ComboBox {private const int WM_PAINT 0xF;[Browsable(true)][Category("Appearance")][Description("边框…

Python 爬虫入门教程:从零构建你的第一个网络爬虫

网络爬虫是一种自动化程序&#xff0c;用于从网站抓取数据。Python 凭借其丰富的库和简单的语法&#xff0c;是构建网络爬虫的理想语言。本文将带你从零开始学习 Python 爬虫的基本知识&#xff0c;并实现一个简单的爬虫项目。 1. 什么是网络爬虫&#xff1f; 网络爬虫&#x…

使用UE5.5的Animator Kit变形器

UE5.5版本更新了AnimatorKit内置插件&#xff0c;其中包含了一些内置变形器&#xff0c;可以辅助我们的动画制作。 操作步骤 首先打开UE5.5&#xff0c;新建第三人称模板场景以便测试&#xff0c;并开启AnimatorKit组件。 新建Sequence&#xff0c;放入测试角色 点击角色右…

Uniapp 安装安卓、IOS模拟器并调试

一、安装Android模拟器并调试 1. 下载并安装 Android Studio 首先下载 Mac 环境下的 Android Studio 的安装包&#xff0c;为dmg 格式。 下载完将Android Studio 向右拖拽到Applications中&#xff0c;接下来等待安装完成就OK啦&#xff01; 打开过程界面如下图所示&#xf…

shell(5)字符串运算符和逻辑运算符

声明&#xff01; 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&#…

【金蝶双线指标】以看资金进出操作为主,兼顾波段跟踪和短线低吸

如上图&#xff0c;个股副图指标&#xff0c;大佬资金监控短线低吸攻击线操盘线趋势红蝴蝶&#xff0c;五大功能于一体。下面慢慢给大家仔细分享。 大佬资金监控指标&#xff0c;红绿进出&#xff0c;绿色缩小到极致&#xff0c;接近零轴&#xff0c;红绿柱分界线&#xff0c;为…

多输入多输出 | Matlab实现TCN-GRU时间卷积神经网络结合门控循环单元多输入多输出预测

多输入多输出 | Matlab实现TCN-GRU时间卷积神经网络结合门控循环单元多输入多输出预测 目录 多输入多输出 | Matlab实现TCN-GRU时间卷积神经网络结合门控循环单元多输入多输出预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 多输入多输出 | Matlab实现TCN-GRU时间卷积…

HCIA笔记4--VLAN划分

1. vlan是什么 vlan: virtual lan; 虚拟局域网的简称。 主要目的是隔离广播域。 2. vlan报文格式 在普通的以太网数据帧开关的12字节后添加4字节的vlan tag。而来区分vlan的是其中的vid部分12个比特位&#xff0c;范围自然就是0~2^12-1(0~4095); 0 4095保留使用。实际使用的是…