Zookeeper选举算法与提案处理概览

共识算法(Consensus Algorithm)

共识算法即在分布式系统中节点达成共识的算法,提高系统在分布式环境下的容错性。
依据系统对故障组件的容错能力可分为:

  • 崩溃容错协议(Crash Fault Tolerant, CFT) : 无恶意行为,如进程崩溃,只要失败的quorum不过半即可正常提供服务
  • 拜占庭容错协议(Byzantine Fault Tolerant, BFT): 有恶意行为,只要恶意的quorum不过1/3即可正常提供服务

分布式环境下节点之间是没有一个全局时钟和同频时钟,故在分布式系统中的通信天然是异步的。
而在异步环境下是没有共识算法能够完全保证一致性(极端场景下会出现不一致,通常是不会出现)

In a fully asynchronous message-passing distributed system, in which at least one process may have a crash failure,
it has been proven in the famous 1985 FLP impossibility result by Fischer, Lynch and Paterson that a deterministic algorithm for achieving consensus is impossible.

另外网络是否可以未经许可直接加入新节点也是共识算法考虑的一方面,
未经许可即可加入的网络环境会存在女巫攻击(Sybil attack)

分布式系统中,根据共识形成的形式可分为

  • Voting-based Consensus Algorithms: Practical Byzantine Fault Tolerance、HotStuff、Paxos、 Raft、 ZAB …
  • Proof-based Consensus Algorithms: Proof-of-Work、Proof-of-Stake …

Zookeeper模型与架构

A Distributed Coordination Service for Distributed Applications:
ZooKeeper is a centralized service for maintaining configuration information, naming, providing distributed synchronization, and providing group services.

Zookeeper(后简称zk)定位于分布式环境下的元数据管理,而不是数据库,zk中数据存在内存中,所以不适合存储大量数据。
zk以形如linux文件系统的树形层级结构管理数据,如下图所示:

在这里插入图片描述

每一个节点称为一个znode除了存放用户数据(一般为1KB以内)还包含变更版本、变更时间、ACL信息等统计数据(Stat Structure):

  • czxid: The zxid of the change that caused this znode to be created.
  • mzxid: The zxid of the change that last modified this znode.
  • pzxid: The zxid of the change that last modified children of this znode.
  • ctime: The time in milliseconds from epoch when this znode was created.
  • mtime: The time in milliseconds from epoch when this znode was last modified.
  • version: The number of changes to the data of this znode.
  • cversion: The number of changes to the children of this znode.
  • aversion: The number of changes to the ACL of this znode.
  • ephemeralOwner: The session id of the owner of this znode if the znode is an ephemeral node. If it is not an ephemeral node, it will be zero.
  • dataLength: The length of the data field of this znode.
  • numChildren: The number of children of this znode.

同时znode节点可设置为以下特性:

  • ephemeral: 和session生命周期相同
  • sequential: 顺序节点,比如创建顺序节点/a/b,则会生成/a/b0000000001 ,再次创建/a/b,则会生成/a/b0000000002
  • container: 容器节点,用于存放其他节点的节点,子节点无则它也无了,监听container节点需要考虑节点不存在的情况

Zookeeper集群中节点分为三个角色:

  • Leader:它负责 发起并维护与各 Follower 及 Observer 间的心跳。所有的写操作必须要通过 Leader 完成再由 Leader 将写操作广播给其它服务器。一个 Zookeeper 集群同一时间只会有一个实际工作的 Leader。
  • Follower:它会响应 Leader 的心跳。Follower 可直接处理并返回客户端的读请求,同时会将写请求转发给 Leader 处理,并且负责在 Leader 处理写请求时对请求进行投票。一个 Zookeeper 集群可能同时存在多个 Follower。
  • Observer:角色与 Follower 类似,但是无投票权。

为了保证事务的顺序一致性,ZooKeeper 采用了递增的zxid来标识事务,zxid(64bit)由epoch(32bit)+counter(32bit)组成,如果counter溢出会强制重新选主,开启新纪元,如果epoch满了呢?

读操作可以在任意一台zk集群节点中进行,包括watch操作也是,但写操作需要集中转发给Leader节点进行串行化执行保证一致性。
Leader 服务会为每一个 Follower 服务器分配一个单独的队列,然后将事务 Proposal 依次放入队列中,并根据 FIFO(先进先出) 的策略进行消息发送。Follower 服务在接收到 Proposal 后,会将其以事务日志的形式写入本地磁盘中,并在写入成功后反馈给 Leader 一个 Ack 响应。
当 Leader 接收到超过半数 Follower 的 Ack 响应后,就会广播一个 Commit 消息给所有的 Follower 以通知其进行事务提交,之后 Leader 自身也会完成对事务的提交。而每一个 Follower 则在接收到 Commit 消息后,完成事务的提交。
这个流程和二阶段提交很像,只是ZAB没有二阶段的回滚操作。

ZAB(Zookeeper Atomic Broadcast)

Fast Leader Election(FLE)

  • myid: 即sid,有cfg配置文件配置,每个节点之间不重复
  • logicalclock: 即electionEpoch,选举逻辑时钟

public class FastLeaderElection implements Election {// ...public Vote lookForLeader() throws InterruptedException {self.start_fle = Time.currentElapsedTime();try {/** The votes from the current leader election are stored in recvset. In other words, a vote v is in recvset* if v.electionEpoch == logicalclock. The current participant uses recvset to deduce on whether a majority* of participants has voted for it.*/// 投票箱, sid : VoteMap<Long, Vote> recvset = new HashMap<>();/** The votes from previous leader elections, as well as the votes from the current leader election are* stored in outofelection. Note that notifications in a LOOKING state are not stored in outofelection.* Only FOLLOWING or LEADING notifications are stored in outofelection. The current participant could use* outofelection to learn which participant is the leader if it arrives late (i.e., higher logicalclock than* the electionEpoch of the received notifications) in a leader election.*/// 存放上一轮投票和这一轮投票 & (FOLLOWING/LEADING)状态的peer的投票// 如果有(FOLLOWING/LEADING)的投票来迟了(即已经选出了leader但是当前节点接收ack的notification迟了),// 可根据outofelection来判断leader是否被quorum ack了,是则跟随该leaderMap<Long, Vote> outofelection = new HashMap<>();int notTimeout = minNotificationInterval;synchronized (this) {// 更新当前electionEpochlogicalclock.incrementAndGet();// 更新投票为自己updateProposal(getInitId(), getInitLastLoggedZxid(), getPeerEpoch());}// 投当前的leader一票,即投自己一票sendNotifications();SyncedLearnerTracker voteSet = null;/** Loop in which we exchange notifications until we find a leader*/// 循环直到有leader出现while ((self.getPeerState() == ServerState.LOOKING) && (!stop)) {/** Remove next notification from queue, times out after 2 times* the termination time*/// 拉取其他peer的投票Notification n = recvqueue.poll(notTimeout, TimeUnit.MILLISECONDS);/** Sends more notifications if haven't received enough.* Otherwise processes new notification.*/if (n == null) { // 没收到peer的投票信息if (manager.haveDelivered()) { // 上面的notification都发完了sendNotifications(); // 再发一次} else {manager.connectAll(); // 建立连接}/** 指数退避*/notTimeout = Math.min(notTimeout << 1, maxNotificationInterval);/** When a leader failure happens on a master, the backup will be supposed to receive the honour from* Oracle and become a leader, but the honour is likely to be delay. We do a re-check once timeout happens** The leader election algorithm does not provide the ability of electing a leader from a single instance* which is in a configuration of 2 instances.* */if (self.getQuorumVerifier() instanceof QuorumOracleMaj&& self.getQuorumVerifier().revalidateVoteset(voteSet, notTimeout != minNotificationInterval)) {setPeerState(proposedLeader, voteSet);Vote endVote = new Vote(proposedLeader, proposedZxid, logicalclock.get(), proposedEpoch);leaveInstance(endVote);return endVote;}} else if (validVoter(n.sid) && validVoter(n.leader)) { // 收到其他peer的投票/** Only proceed if the vote comes from a replica in the current or next* voting view for a replica in the current or next voting view.*/// 判断发送投票的peer当前状态switch (n.state) {case LOOKING: // 选主中if (getInitLastLoggedZxid() == -1) {break;}if (n.zxid == -1) {break;}if (n.electionEpoch > logicalclock.get()) { // peer的electionEpoch大于当前节点的electionEpochlogicalclock.set(n.electionEpoch); // 直接快进到大的epoch,即peer的electionEpochrecvset.clear(); // 并清空投票箱// 投票pk// peer投票和当前节点进行投票pk: peerEpoch -> zxid -> myid(sid)if (totalOrderPredicate(n.leader, n.zxid, n.peerEpoch, getInitId(), getInitLastLoggedZxid(), getPeerEpoch())) {//  peer赢了,把当前节点的leader zxid peerEpoch设置为peer的updateProposal(n.leader, n.zxid, n.peerEpoch);} else {// 当前节点赢了,恢复自己的配置updateProposal(getInitId(), getInitLastLoggedZxid(), getPeerEpoch());}// 将上面更新后的自己的投票信息广播出去sendNotifications();} else if (n.electionEpoch < logicalclock.get()) {// 如果peer的electionEpoch比当前节点的electionEpoch小,则直接忽略break;} else// electionEpoch相等,进行投票pk: peerEpoch -> zxid -> myid(sid)if (totalOrderPredicate(n.leader, n.zxid, n.peerEpoch, proposedLeader, proposedZxid, proposedEpoch)) {// pk是peer赢了,跟随peer投票,并广播出去updateProposal(n.leader, n.zxid, n.peerEpoch);sendNotifications();}// 将peer的投票放入投票箱recvset.put(n.sid, new Vote(n.leader, n.zxid, n.electionEpoch, n.peerEpoch));voteSet = getVoteTracker(recvset, new Vote(proposedLeader, proposedZxid, logicalclock.get(), proposedEpoch));if (voteSet.hasAllQuorums()) {// Verify if there is any change in the proposed leaderwhile ((n = recvqueue.poll(finalizeWait, TimeUnit.MILLISECONDS)) != null) {if (totalOrderPredicate(n.leader, n.zxid, n.peerEpoch, proposedLeader, proposedZxid, proposedEpoch)) {recvqueue.put(n);break;}}/** This predicate is true once we don't read any new* relevant message from the reception queue*/if (n == null) {setPeerState(proposedLeader, voteSet);Vote endVote = new Vote(proposedLeader, proposedZxid, logicalclock.get(), proposedEpoch);leaveInstance(endVote);return endVote;}}break;case OBSERVING: // peer是观察者,不参与投票直接返回LOG.debug("Notification from observer: {}", n.sid);break;/** In ZOOKEEPER-3922, we separate the behaviors of FOLLOWING and LEADING.* To avoid the duplication of codes, we create a method called followingBehavior which was used to* shared by FOLLOWING and LEADING. This method returns a Vote. When the returned Vote is null, it follows* the original idea to break switch statement; otherwise, a valid returned Vote indicates, a leader* is generated.** The reason why we need to separate these behaviors is to make the algorithm runnable for 2-node* setting. An extra condition for generating leader is needed. Due to the majority rule, only when* there is a majority in the voteset, a leader will be generated. However, in a configuration of 2 nodes,* the number to achieve the majority remains 2, which means a recovered node cannot generate a leader which is* the existed leader. Therefore, we need the Oracle to kick in this situation. In a two-node configuration, the Oracle* only grants the permission to maintain the progress to one node. The oracle either grants the permission to the* remained node and makes it a new leader when there is a faulty machine, which is the case to maintain the progress.* Otherwise, the oracle does not grant the permission to the remained node, which further causes a service down.** In the former case, when a failed server recovers and participate in the leader election, it would not locate a* new leader because there does not exist a majority in the voteset. It fails on the containAllQuorum() infinitely due to* two facts. First one is the fact that it does do not have a majority in the voteset. The other fact is the fact that* the oracle would not give the permission since the oracle already gave the permission to the existed leader, the healthy machine.* Logically, when the oracle replies with negative, it implies the existed leader which is LEADING notification comes from is a valid leader.* To threat this negative replies as a permission to generate the leader is the purpose to separate these two behaviors.*** */case FOLLOWING: // peer正在following leaderVote resultFN = receivedFollowingNotification(recvset, outofelection, voteSet, n);if (resultFN == null) {break;} else {// 成功选主,返回return resultFN;}case LEADING: // peer 是 leader/** In leadingBehavior(), it performs followingBehvior() first. When followingBehavior() returns* a null pointer, ask Oracle whether to follow this leader.* */Vote resultLN = receivedLeadingNotification(recvset, outofelection, voteSet, n);if (resultLN == null) {break;} else {return resultLN;}default:break;}} else {// 推举的leader或投票的peer不合法,直接忽略// ...}}return null;} finally {// ...}}private Vote receivedFollowingNotification(Map<Long, Vote> recvset, Map<Long, Vote> outofelection,SyncedLearnerTracker voteSet, Notification n) {/** Consider all notifications from the same epoch* together.*/if (n.electionEpoch == logicalclock.get()) { // 同一轮投票//            若对方选票中的electionEpoch等于当前的logicalclock,//            说明选举结果已经出来了,将它们放入recvset。recvset.put(n.sid, new Vote(n.leader, n.zxid, n.electionEpoch, n.peerEpoch, n.state));voteSet = getVoteTracker(recvset, new Vote(n.version, n.leader, n.zxid, n.electionEpoch, n.peerEpoch, n.state));// 判断quorum是否满足选主条件if (voteSet.hasAllQuorums() &&// 判断推举的leader已经被quorum ack了,避免leader挂了导致集群一直在选举中checkLeader(recvset, n.leader, n.electionEpoch)) {// leader是自己,将自己设置为LEADING,否则是FOLLOWING(或OBSERVING)setPeerState(n.leader, voteSet);Vote endVote = new Vote(n.leader, n.zxid, n.electionEpoch, n.peerEpoch);// 清空消费投票的queueleaveInstance(endVote);return endVote;}}// 到这里是// peer的electionEpoch和logicalclock不一致// 因为peer是FOLLOWING,所以在它的electionEpoch里已经选主成功了/** 在跟随peer选出的leader前,校验这个leader合法不合法* Before joining an established ensemble, verify that* a majority are following the same leader.** Note that the outofelection map also stores votes from the current leader election.* See ZOOKEEPER-1732 for more information.*/outofelection.put(n.sid, new Vote(n.version, n.leader, n.zxid, n.electionEpoch, n.peerEpoch, n.state));voteSet = getVoteTracker(outofelection, new Vote(n.version, n.leader, n.zxid, n.electionEpoch, n.peerEpoch, n.state));if (voteSet.hasAllQuorums() && checkLeader(outofelection, n.leader, n.electionEpoch)) {synchronized (this) {logicalclock.set(n.electionEpoch);setPeerState(n.leader, voteSet);}Vote endVote = new Vote(n.leader, n.zxid, n.electionEpoch, n.peerEpoch);leaveInstance(endVote);return endVote;}return null;}private Vote receivedLeadingNotification(Map<Long, Vote> recvset, Map<Long, Vote> outofelection, SyncedLearnerTracker voteSet, Notification n) {/** 在两个节点的集群中(leader+follower),如果follower挂了,recovery之后,因为投票无法过半(follower会首先投自己一票),会找不到leader* In a two-node configuration, a recovery nodes cannot locate a leader because of the lack of the majority in the voteset.* Therefore, it is the time for Oracle to take place as a tight breaker.* */Vote result = receivedFollowingNotification(recvset, outofelection, voteSet, n);if (result == null) {/** Ask Oracle to see if it is okay to follow this leader.* We don't need the CheckLeader() because itself cannot be a leader candidate* */// needOracle,当集群无follower & 集群voter==2 时,if (self.getQuorumVerifier().getNeedOracle() // 且cfg配置中key=oraclePath的文件(默认没有,askOracle默认false)中的值 != '1' 时会走到if里// 这里可参考官网 https://zookeeper.apache.org/doc/current/zookeeperOracleQuorums.html&& !self.getQuorumVerifier().askOracle()) {LOG.info("Oracle indicates to follow");setPeerState(n.leader, voteSet);Vote endVote = new Vote(n.leader, n.zxid, n.electionEpoch, n.peerEpoch);leaveInstance(endVote);return endVote;} else {LOG.info("Oracle indicates not to follow");return null;}} else {return result;}}// ...
}

提案处理

在这里插入图片描述

所有的提案均通过leader来提,follower接受的提案会转发到leader。
zk采用责任链模式对请求进行处理,不同的角色(leader/follower/observer)对应不同的责任链:

在这里插入图片描述

以下是leader的各个Processor的作用

  • LeaderRequestProcessor: Responsible for performing local session upgrade. Only request submitted directly to the leader should go through this processor.
  • PrepRequestProcessor: It sets up any transactions associated with requests that change the state of the system
  • ProposalRequestProcessor: 调用Leader#propose将proposal加入发送给follower的queue,由LeaderHandler异步发送给follower和处理follower的ack
  • SyncRequestProcessor: 将request写磁盘
  • AckRequestProcessor: ack leader自己的request
  • CommitProcessor: 提交提案。CommitProcessor本身是一个线程,上游调用先把request加入队列,然后异步消费处理
  • ToBeAppliedRequestProcessor: simply maintains the toBeApplied list
  • FinalRequestProcessor: This Request processor actually applies any transaction associated with a request and services any queries

接收follower的ack并提交走下面的调用:

org.apache.zookeeper.server.quorum.Leader.LearnerCnxAcceptor#run
org.apache.zookeeper.server.quorum.Leader.LearnerCnxAcceptor.LearnerCnxAcceptorHandler#run
org.apache.zookeeper.server.quorum.Leader.LearnerCnxAcceptor.LearnerCnxAcceptorHandler#acceptConnections
org.apache.zookeeper.server.quorum.LearnerHandler#run
org.apache.jute.BinaryInputArchive#readRecord
org.apache.zookeeper.server.quorum.LearnerMaster#processAck 这里如果满足quorum则调用CommitProcessor
org.apache.zookeeper.server.quorum.Leader#tryToCommit
org.apache.zookeeper.server.quorum.Leader#commit (leader 发送commit消息给follower,此时leader还不一定提交了,因为异步处理的) 
org.apache.zookeeper.server.quorum.Leader#inform (leader 发送inform消息给observer,此时leader还不一定提交了,因为异步处理的)

判断是否满足quorum的方法为:SyncedLearnerTracker#hasAllQuorums

public class SyncedLearnerTracker { // Proposal的父类,即每个提案一个Trackerpublic static class QuorumVerifierAcksetPair {private final QuorumVerifier qv; // 每一个zxid就是一个QuorumVerifierprivate final HashSet<Long> ackset; // ack的sid set...}protected ArrayList<QuorumVerifierAcksetPair> qvAcksetPairs = new ArrayList<>();...public boolean hasAllQuorums() {for (QuorumVerifierAcksetPair qvAckset : qvAcksetPairs) {if (!qvAckset.getQuorumVerifier().containsQuorum(qvAckset.getAckset())) {return false;}}return true;}...
}

最终调用QuorumMaj#containsQuorum

public class QuorumMaj implements QuorumVerifier {...protected int half = votingMembers.size() / 2;/*** Verifies if a set is a majority. Assumes that ackSet contains acks only* from votingMembers*/public boolean containsQuorum(Set<Long> ackSet) {return (ackSet.size() > half);}...

参考

  • Consensus Algorithms in Distributed Systems
  • FLP Impossibility Result
  • zookeeperInternals
  • 详解分布式协调服务 ZooKeeper,再也不怕面试问这个了
  • Lecture 8: Zookeeper
  • ZooKeeper: Wait-free coordination for Internet-scale systems
  • diff_acceptepoch_currentepoch
  • Zookeeper(FastLeaderElection选主流程详解)
  • zookeeper-framwork-design-message-processor-leader

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/481043.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Cesium 当前位置矩阵的获取

Cesium 位置矩阵的获取 在 3D 图形和地理信息系统&#xff08;GIS&#xff09;中&#xff0c;位置矩阵是将地理坐标&#xff08;如经纬度&#xff09;转换为世界坐标系的一种重要工具。Cesium 是一个强大的开源 JavaScript 库&#xff0c;用于创建 3D 地球和地图应用。在 Cesi…

SQL进阶技巧:非等值连接--单向近距离匹配

目录 0 场景描述 1 数据准备 2 问题分析 ​编辑 ​编辑 3 小结 数字化建设通关指南 0 场景描述 表 t_1 和表 t_2 通过 a 和 b 关联时&#xff0c;有相等的取相等的值匹配&#xff0c;不相等时每一 个 a 的值在 b 中找差值最小的来匹。 表 t_1&#xff1a;a 中无重复值…

微积分复习笔记 Calculus Volume 2 - 3.1

The first 2 chapters of volume 2 are the same as those in volume 1. Started with Chapter 3. 3.1 Integration by Parts - Calculus Volume 2 | OpenStax

红日靶场-5

环境搭建 这个靶场相对于前几个靶场来说较为简单&#xff0c;只有两台靶机&#xff0c;其中一台主机是win7&#xff0c;作为我们的DMZ区域的入口机&#xff0c;另外一台是windows2008&#xff0c;作为我们的域控主机&#xff0c;所以我们只需要给我们的win7配置两张网卡&#…

软通动力携子公司鸿湖万联、软通教育助阵首届鸿蒙生态大会成功举办

11月23日中国深圳&#xff0c;首届鸿蒙生态大会上&#xff0c;软通动力及软通动力子公司鸿湖万联作为全球智慧物联网联盟&#xff08;GIIC&#xff09;理事单位、鸿蒙生态服务&#xff08;深圳&#xff09;有限公司战略合作伙伴&#xff0c;联合软通教育深度参与了大会多项重磅…

Mac配置和启动 Tomcat

Tomcat 配置与启动&#xff1a; 配置 Tomcat&#xff1a; homebrew install tomcat 启动 Tomcat&#xff1a; 如果cd ~/tomcat/bin文件夹存在startup.sh文件&#xff0c;可以直接在终端运行&#xff1a;./startup.sh 如果~/bin目录下&#xff0c;只有catalina文件。则在终端运行…

基于matlab程序实现人脸识别

1.人脸识别流程 1.1.1基本原理 基于YCbCr颜色空间的肤色模型进行肤色分割。在YCbCr色彩空间内对肤色进行了建模发现&#xff0c;肤色聚类区域在Cb—Cr子平面上的投影将缩减&#xff0c;与中心区域显著不同。采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。…

Java多线程介绍及使用指南

“多线程”&#xff1a;并发 要介绍线程&#xff0c;首先要区分开程序、进程和线程这三者的区别。 程序&#xff1a;具有一定功能的代码的集合&#xff0c;但是是静态的&#xff0c;没有启动运行 进程&#xff1a;启动运行的程序【资源的分配单位】 线程&#xff1a;进程中的…

[论文阅读]Poisoning Retrieval Corpora by Injecting Adversarial Passages

Poisoning Retrieval Corpora by Injecting Adversarial Passages 通过注入对抗性文本对检索语料库进行中毒 http://arxiv.org/abs/2310.19156 EMNLP2023 文章的目标就是要让检索器检索的结果包含攻击者生成的对抗性文本&#xff0c;如果能够检索到&#xff0c;则认为攻击成…

Leetcode 二叉树的锯齿形层序遍历

算法思想&#xff1a; 这段代码实现了 二叉树的锯齿形层序遍历&#xff0c;其核心思想是基于广度优先搜索&#xff08;BFS&#xff09;进行层序遍历&#xff0c;并根据当前层数决定从左到右或从右到左的顺序来组织每一层的节点值。 level.add 和 level.addFirst 有点类似单链…

OpenCV 图像轮廓查找与绘制全攻略:从函数使用到实战应用详解

摘要&#xff1a;本文详细介绍了 OpenCV 中用于查找图像轮廓的 cv2.findContours() 函数以及绘制轮廓的 cv2.drawContours() 函数的使用方法。涵盖 cv2.findContours() 各参数&#xff08;如 mode 不同取值对应不同轮廓检索模式&#xff09;及返回值的详细解析&#xff0c;搭配…

Linux操作系统2-进程控制3(进程替换,exec相关函数和系统调用)

上篇文章&#xff1a;Linux操作系统2-进程控制2(进程等待&#xff0c;waitpid系统调用&#xff0c;阻塞与非阻塞等待)-CSDN博客 本篇代码Gitee仓库&#xff1a;Linux操作系统-进程的程序替换学习 d0f7bb4 橘子真甜/linux学习 - Gitee.com 本篇重点&#xff1a;进程替换 目录 …

0基础学前端系列 -- 深入理解 HTML 布局

在现代网页设计中&#xff0c;布局是至关重要的一环。良好的布局不仅能提升用户体验&#xff0c;还能使内容更具可读性和美观性。HTML&#xff08;超文本标记语言&#xff09;结合 CSS&#xff08;层叠样式表&#xff09;为我们提供了多种布局方式。本文将详细介绍流式布局、Fl…

Springboot集成通义大模型

1.先到阿里云平台开头阿里云白炼账号&#xff0c;创建apiKey 2. 引入maven依赖 <dependency><groupId>com.alibaba</groupId><artifactId>dashscope-sdk-java</artifactId><version>2.8.3</version></dependency><!-- htt…

哈希表算法题

目录 题目一——1. 两数之和 - 力扣&#xff08;LeetCode&#xff09; 1.1.暴力解法1 1.2.暴力解法2 1.2.哈希表解法 题目二——面试题 01.02. 判定是否互为字符重排 - 力扣&#xff08;LeetCode&#xff09; 2.1.哈希表解法 2.2.排序解法 题目三——217. 存在重复元…

Cookie跨域

跨域&#xff1a;跨域名&#xff08;IP&#xff09; 跨域的目的是共享Cookie。 session操作http协议&#xff0c;每次既要request&#xff0c;也要response&#xff0c;cookie在创建的时候会产生一个字符串然后随着response返回。 全网站的各个页面都会带着登陆的时候的cookie …

个人博客接入github issue风格的评论,utteranc,gitment

在做个人博客的时候&#xff0c;如果你需要评论功能&#xff0c;但是又不想构建用户体系和评论模块&#xff0c;那么可以直接使用github的issue提供的接口&#xff0c;对应的开源项目有utteranc和gitment&#xff0c;尤其是前者。 它们的原理是一样的&#xff1a;在博客文章下…

React第十节组件之间传值之context

1、Context 使用creatContext() 和 useContext() Hook 实现多层级传值 概述&#xff1a; 在我们想要每个层级都需要某一属性&#xff0c;或者祖孙之间需要传值时&#xff0c;我们可以使用 props 一层一层的向下传递&#xff0c;或者我们使用更便捷的方案&#xff0c;用 creatC…

JVM_垃圾收集器详解

1、 前言 JVM就是Java虚拟机&#xff0c;说白了就是为了屏蔽底层操作系统的不一致而设计出来的一个虚拟机&#xff0c;让用户更加专注上层&#xff0c;而不用在乎下层的一个产品。这就是JVM的跨平台&#xff0c;一次编译&#xff0c;到处运行。 而JVM中的核心功能其实就是自动…

RPA:电商订单处理自动化

哈喽&#xff0c;大家好&#xff0c;我是若木&#xff0c;最近闲暇时间较多&#xff0c;于是便跟着教程做了一个及RPA&#xff0c;谈到这个&#xff0c;可能很多人并不是很了解&#xff0c;但是实际上&#xff0c;这玩意却遍布文末生活的边边角角。话不多说&#xff0c;我直接上…