OpenCV 图像轮廓查找与绘制全攻略:从函数使用到实战应用详解

在这里插入图片描述

摘要:本文详细介绍了 OpenCV 中用于查找图像轮廓的 cv2.findContours() 函数以及绘制轮廓的 cv2.drawContours() 函数的使用方法。涵盖 cv2.findContours() 各参数(如 mode 不同取值对应不同轮廓检索模式)及返回值的详细解析,搭配多幅示例图片与丰富代码示例展示不同模式下的效果差异,同时展示了 cv2.drawContours() 的用法,并通过案例讲解如何利用轮廓绘制功能获取前景对象,助力读者全面掌握图像轮廓相关操作要点及应用场景。
如果您觉得我的文章对您有帮助,可以点赞收藏关注,持续学习更多与OpenCV相关的知识

OpenCV 图像轮廓查找与绘制全攻略:从函数使用到实战应用详解

  • 查找并绘制轮廓
    • cv2.findContours()函数的使用
      • 返回值countours的属性
      • 参数mode与返回值hierarchy
    • cv2.drawContours()函数的使用
      • 利用轮廓绘制功能,获取前景对象
  • 致谢

查找并绘制轮廓

边缘检测能检测出边缘,但是边缘不连续,但不是一个整体。OpenCV提供了cv2.findContours()去查找图像轮廓,cv2.drawContours()将轮廓绘制起来。

cv2.findContours()函数的使用

该函数的语法如下:
image与被处理图像一致,contours返回的轮廓 ,hierarchy 图像的拓普信息(轮廓层次) = cv2.findContours(image原始图像,mode轮廓检索模式,method轮廓的近似方法)
这里有一个补充:当OpenCV版本的大于4.x,返回值没有image
我通过画图板画了一个例子,存储在和代码同一个文件夹下,大家可以复制我的图片,去作为练习,(补充一个重要的前提:OpenCV中,都是从黑色背景中找白色对象,对象是白的,背景是黑的,图片必须是灰度二值图像,对于彩色图像要做好阈值处理):
在这里插入图片描述
我将这张图片命名为countours.JPG,这是我的文件夹(我用的是 jupyter notebook 大家用pycharm的就把代码和图片放在同一个文件夹下就可以运行我的代码了):
在这里插入图片描述

返回值countours的属性

他的类型是list:

import numpy as np
import cv2
img = cv2.imread("countours.JPG",cv2.IMREAD_GRAYSCALE)
countours , hierarchy = cv2.findContours(img,mode = cv2.RETR_EXTERNAL,method = cv2.CHAIN_APPROX_NONE)
print(type(countours))

在这里插入图片描述
每一条轮廓的shape与内容都用列表的方法访问:
一定要注意 必须先用高斯滤波进行平滑处理去除噪声 再用二值化阈值处理,才能计算出正确的轮廓

import numpy as np
import cv2
img = cv2.imread("countours.JPG",cv2.IMREAD_GRAYSCALE)# 先用高斯滤波平滑处理
img = cv2.GaussianBlur(img, (5, 5), 0)
# 再用阈值处理转化为二值图像
_,img = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)
countours , hierarchy = cv2.findContours(img,mode = cv2.RETR_EXTERNAL,method = cv2.CHAIN_APPROX_NONE)
print(len(countours))
for i in range(len(countours)):print(countours[i].shape)print(countours[i])

在这里插入图片描述
通过代码找出来十条轮廓,与我们手动标注的数量一致:
在这里插入图片描述

参数mode与返回值hierarchy

我将这张图片命名为mode.JPG,这是我的文件夹(我用的是 jupyter notebook 大家用pycharm的就把代码和图片放在同一个文件夹下就可以运行我的代码了):
在这里插入图片描述
在这里插入图片描述
不同的mode参数对应着不同的hierarchy,分为四种:
第一种:cv2.RETR_EXTERNAL(只检测外轮廓)

import numpy as np
import cv2
img = cv2.imread("mode.JPG",cv2.IMREAD_GRAYSCALE)# 先用高斯滤波平滑处理
img = cv2.GaussianBlur(img, (5, 5), 0)
# 再用阈值处理转化为二值图像
_,img = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)
countours , hierarchy = cv2.findContours(img,mode = cv2.RETR_EXTERNAL,method = cv2.CHAIN_APPROX_NONE)
print(len(countours))
print(hierarchy)

输出值[1 -1 -1 -1]代表 第0个轮廓的后一个轮廓是第一个轮廓,他没有前一个轮廓 所以第二个元素是-1 他没有子轮廓 和父轮廓 所以第三第四个元素都是 - 1
输出值[-1 0 -1 -1]代表第1个轮廓 没有后面轮廓了 所以是-1 他的前一个轮廓 是0,他没有子轮廓和父轮廓 所以第三个第四个元素都是 -1
在这里插入图片描述
找到了两条轮廓,原因是cv2.RETR_EXTERNAL会导致只搜索外轮廓:
在这里插入图片描述
第二种:cv2.RETR_LIST
检测到的轮廓不考虑父子关系
在上面的代码中修改mode = cv2.RETR_LIST,运行结果如下:
在这里插入图片描述
这个结果前两行的第一个元素都是 1 2 说明他们有后一个轮廓 ,因为没有考虑父子关系,所以每一行的三四元素都是-1 第1 第2 轮廓都有前一个轮廓 分别是 0 和1 ,所以第二列 是 -1 0 1
第三种:cv2.RETR_CCOMP
检查所有轮廓并组织称一个两级层次结构,修改参数mode = cv2.RETR_CCOMP,继续运行得到如下结果:
在这里插入图片描述
可以看到第1 轮廓 和 第2 轮廓存在了 父子 关系 :
在这里插入图片描述
对于1,2轮廓来说他们是父子关系,所以不存在后一个轮廓所以是-1:
在这里插入图片描述
第四种:cv2.RETR_TREE
生成一个等级树,为了验证第四个和第三个的区别,我重新用画图板画了一张图起名为tree.JPG,大家可以复制到自己的文件夹下:
在这里插入图片描述

import numpy as np
import cv2
img = cv2.imread("tree.JPG",cv2.IMREAD_GRAYSCALE)
# 先用高斯滤波平滑处理
img = cv2.GaussianBlur(img, (5, 5), 0)
# 再用阈值处理转化为二值图像
_,img = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)
countours_comp , hierarchy_comp = cv2.findContours(img,mode = cv2.RETR_CCOMP,method = cv2.CHAIN_APPROX_NONE)
countours_tree , hierarchy_tree = cv2.findContours(img,mode = cv2.RETR_TREE,method = cv2.CHAIN_APPROX_NONE)
print(hierarchy_comp)
print(hierarchy_tree)

详细分析一下,运行结果:
在这里插入图片描述
显而易见的是 cv2.RETR_CCOMP时,最多产生一个两级的父子结构:
在这里插入图片描述
但是cv2.RETR_TREE产生了一个多级的父子结构树:
在这里插入图片描述

cv2.drawContours()函数的使用

语法:
cou_image待绘制的轮廓图像 = cv2.drawCountours(image待处理图像,countours需要绘制的轮廓 list类型,countourIdx绘制的边缘索引,color绘制的颜色,thickness绘制轮廓的粗细,lineType画笔类型,hierarchy拓普信息,maxLevel层次的深度,offset偏移参数,使得轮廓偏移多少位置)
使用tree.JPG做案例来用代码验证一下效果:

import numpy as np
import cv2
img = cv2.imread("tree.JPG",cv2.IMREAD_GRAYSCALE)
# 先用高斯滤波平滑处理
img = cv2.GaussianBlur(img, (5, 5), 0)
# 再用阈值处理转化为二值图像
_,img = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)
countours_tree , hierarchy_tree = cv2.findContours(img,mode = cv2.RETR_TREE,method = cv2.CHAIN_APPROX_NONE)n = len(countours_tree)
contourImg = []
cv2.imshow("orig",img)
for i in range(n):temp = np.zeros(img.shape,np.uint8)contourImg.append(temp)contourImg[i] = cv2.drawContours(contourImg[i],countours_tree,i,(255,255,255),5)cv2.imshow(f"contour[ {i}]",contourImg[i])
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

利用轮廓绘制功能,获取前景对象

这部分的案例使用pig.JPG图片,需要的可以直接复制,跟代码放在同一文件夹之下:
在这里插入图片描述
先讲解一下代码的思路,首先转化成灰度值和二值图像,然后获取轮廓,绘制整个轮廓,利用按位与运算与原图像进行按位与运算,提取前景对象。

import numpy as np
import cv2
bgr_img = cv2.imread("pig.JPG")
img = cv2.cvtColor(bgr_img,cv2.COLOR_BGR2GRAY)
# 先用高斯滤波平滑处理
img = cv2.GaussianBlur(img, (5, 5), 0)
# 再用阈值处理转化为二值图像
_,img = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)
countours_tree , hierarchy_tree = cv2.findContours(img,mode = cv2.RETR_TREE,method = cv2.CHAIN_APPROX_NONE)
mask = np.zeros(bgr_img.shape,np.uint8)
mask = cv2.drawContours(mask,countours_tree,-1,(255,255,255),-1)
loc = cv2.bitwise_and(mask,bgr_img)
cv2.imshow("mask",mask)
cv2.imshow("loc",loc)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

致谢

本文参考了一些博主的文章,博取了他们的长处,也结合了我的一些经验,对他们表达诚挚的感谢,使我对 图像轮廓查找与绘制 有更深入的了解,也推荐大家去阅读一下他们的文章。纸上学来终觉浅,明知此事要躬行:
python+opencv基础篇——实现提取轮廓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/481025.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux操作系统2-进程控制3(进程替换,exec相关函数和系统调用)

上篇文章:Linux操作系统2-进程控制2(进程等待,waitpid系统调用,阻塞与非阻塞等待)-CSDN博客 本篇代码Gitee仓库:Linux操作系统-进程的程序替换学习 d0f7bb4 橘子真甜/linux学习 - Gitee.com 本篇重点:进程替换 目录 …

0基础学前端系列 -- 深入理解 HTML 布局

在现代网页设计中,布局是至关重要的一环。良好的布局不仅能提升用户体验,还能使内容更具可读性和美观性。HTML(超文本标记语言)结合 CSS(层叠样式表)为我们提供了多种布局方式。本文将详细介绍流式布局、Fl…

Springboot集成通义大模型

1.先到阿里云平台开头阿里云白炼账号&#xff0c;创建apiKey 2. 引入maven依赖 <dependency><groupId>com.alibaba</groupId><artifactId>dashscope-sdk-java</artifactId><version>2.8.3</version></dependency><!-- htt…

哈希表算法题

目录 题目一——1. 两数之和 - 力扣&#xff08;LeetCode&#xff09; 1.1.暴力解法1 1.2.暴力解法2 1.2.哈希表解法 题目二——面试题 01.02. 判定是否互为字符重排 - 力扣&#xff08;LeetCode&#xff09; 2.1.哈希表解法 2.2.排序解法 题目三——217. 存在重复元…

Cookie跨域

跨域&#xff1a;跨域名&#xff08;IP&#xff09; 跨域的目的是共享Cookie。 session操作http协议&#xff0c;每次既要request&#xff0c;也要response&#xff0c;cookie在创建的时候会产生一个字符串然后随着response返回。 全网站的各个页面都会带着登陆的时候的cookie …

个人博客接入github issue风格的评论,utteranc,gitment

在做个人博客的时候&#xff0c;如果你需要评论功能&#xff0c;但是又不想构建用户体系和评论模块&#xff0c;那么可以直接使用github的issue提供的接口&#xff0c;对应的开源项目有utteranc和gitment&#xff0c;尤其是前者。 它们的原理是一样的&#xff1a;在博客文章下…

React第十节组件之间传值之context

1、Context 使用creatContext() 和 useContext() Hook 实现多层级传值 概述&#xff1a; 在我们想要每个层级都需要某一属性&#xff0c;或者祖孙之间需要传值时&#xff0c;我们可以使用 props 一层一层的向下传递&#xff0c;或者我们使用更便捷的方案&#xff0c;用 creatC…

JVM_垃圾收集器详解

1、 前言 JVM就是Java虚拟机&#xff0c;说白了就是为了屏蔽底层操作系统的不一致而设计出来的一个虚拟机&#xff0c;让用户更加专注上层&#xff0c;而不用在乎下层的一个产品。这就是JVM的跨平台&#xff0c;一次编译&#xff0c;到处运行。 而JVM中的核心功能其实就是自动…

RPA:电商订单处理自动化

哈喽&#xff0c;大家好&#xff0c;我是若木&#xff0c;最近闲暇时间较多&#xff0c;于是便跟着教程做了一个及RPA&#xff0c;谈到这个&#xff0c;可能很多人并不是很了解&#xff0c;但是实际上&#xff0c;这玩意却遍布文末生活的边边角角。话不多说&#xff0c;我直接上…

字符型注入‘)闭合

前言 进行sql注入的时候&#xff0c;不要忘记闭合&#xff0c;先闭合再去获取数据 步骤 判断是字符型注入 用order by获取不了显位&#xff0c;select也一样 是因为它是’)闭合&#xff0c;闭合之后&#xff0c;就可以获取数据了 最后就是一样的步骤

springboot车辆管理系统设计与实现(代码+数据库+LW)

摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了车辆管理系统的开发全过程。通过分析车辆管理系统管理的不足&#xff0c;创建了一个计算机管理车辆管理系统的方案。文章介绍了车辆管理系统的系统分析部分&…

C#.Net筑基 - 常见类型

01、结构体类型Struct 结构体 struct 是一种用户自定义的值类型&#xff0c;常用于定义一些简单&#xff08;轻量&#xff09;的数据结构。对于一些局部使用的数据结构&#xff0c;优先使用结构体&#xff0c;效率要高很多。 可以有构造函数&#xff0c;也可以没有。因此初始化…

Unity项目性能优化列表

1、对象池 2、检查内存是否泄露。内存持续上升(闭包、委托造成泄露) 3、检查DrawCall数量&#xff0c;尽量减少SetPassCall 4、尽量多的利用四种合批 动态合批(Dynamic Batching)静态合批(Static Batching)GPUInstancingSRP Batcher 动态合批消耗内存把多个网格组合在一起合并…

ComfyUI | ComfyUI桌面版发布,支持winmac多平台体验,汉化共享等技巧!(内附安装包)

ComfyUI 桌面版正式推出&#xff0c;支持 Windows 与 macOS 等多平台&#xff0c;为 AI 绘画爱好者带来全新体验。其安装包便捷易用&#xff0c;开启了轻松上手之旅。汉化共享功能更是一大亮点&#xff0c;打破语言障碍&#xff0c;促进知识交流与传播。在操作上&#xff0c;它…

贪心-区间问题——acwing

题目一&#xff1a;最大不相交区间数量 908. 最大不相交区间数量 - AcWing题库 分析 跟区间选点一样。区间选点&#xff1a;贪心——acwing-CSDN博客 代码 #include<bits/stdc.h> using namespace std;const int N 1e510;struct Range {int l, r;// 重载函数bool op…

【C语言】字符串左旋的三种解题方法详细分析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C语言 文章目录 &#x1f4af;前言&#x1f4af;题目描述&#x1f4af;方法一&#xff1a;逐字符移动法&#x1f4af;方法二&#xff1a;使用辅助空间法&#x1f4af;方法三&#xff1a;三次反转法&#x1f4af;方法对…

肿瘤微环境中单细胞的泛癌分类

scRNA-seq可以揭示肿瘤微环境 (TME) 内细胞异质性的宝贵见解&#xff0c;scATOMIC是一种用于恶性和非恶性细胞的注释工具。在 300,000 个癌症、免疫和基质细胞上训练了 scATOMIC&#xff0c;为 19 种常见癌症定义了一个泛癌症参考&#xff0c;scATOMIC优于当前的分类方法。在 2…

《算法导论》英文版前言To the teacher第3段研习录:题海战术有没有?

【英文版】 We have included 957 exercises and 158 problems. Each section ends with exercises, and each chapter ends with problems. The exercises are generally short questions that test basic mastery of the material. Some are simple self-check thought exer…

docker使用(镜像、容器)

docker基础使用 文章目录 前言1.镜像操作1.1命令介绍1.2.案例实操1.2.1查找镜像1.2.2下载镜像1.2.3查看当前镜像 2.容器操作2.1命令2.1.1容器创建与启动2.1.2. 容器查看2.1.3. 容器操作2.1.4. 容器删除2.1.5. 容器日志2.1.6. 容器内文件操作2.1.7. 容器内命令执行2.1.8. 其他常…

自编码器(二)

自编码器到底好在哪里&#xff1f;当我们把一个高维度的图片&#xff0c;变成一个低维度的向量的时候&#xff0c;到 底带来什么样的帮助呢&#xff1f;我们来设想一下&#xff0c;自编码器这件事情它要做的&#xff0c;是把一张图片压缩 又还原回来&#xff0c;但是还原这件事…