排序学习整理(1)

1.排序的概念及运用

1.1概念

排序:所谓排序,就是使⼀串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作,以便更容易查找、组织或分析数据。

1.2运用

 购物筛选排序

院校排名

1.3常见排序算法

2.实现常见排序算法

int a[] = {5, 3, 9, 6, 2, 4, 7, 1, 8};

2.1 插入排序

把待排序的记录按其关键码值的大小逐个插入到⼀个已经排好序的有序序列中,直到所有的记录插入完为止,得到⼀个新的有序序列 。

2.1.1 直接插入排序

直接插入排序(Direct Insertion Sort)是一种简单直观的排序算法,它通过逐步构建有序序列,将未排序部分的元素插入到已排序部分的适当位置,直到整个数组排序完成。

基本思想

1.将数组分为 已排序部分 和 未排序部分。

                初始时,已排序部分只有第一个元素。

                未排序部分为剩余的元素。

2.依次从未排序部分取出一个元素,插入到已排序部分的正确位置。

3.重复以上操作,直到未排序部分为空。

算法步骤

1.从数组的第二个元素(索引为 1)开始,依次向后遍历。

                对当前元素,在已排序部分从后向前查找其插入位置:

                如果已排序部分的元素大于当前元素,则将其向后移动。

2.找到插入位置后,将当前元素放入。

3.重复此过程,直到所有元素排序完成。

当插入第 i(i>=1) 个元素时,前⾯的 array[0],array[1],…,array[i-1] 已经排好序,此时用 array[i] 的排序码与 array[i-1],array[i-2],… 的排序码顺序进行比较,找到插入位置即将 array[i] 插入,原来位置上的元素顺序后移
代码实现
void InsertSort(int* a, int n) {for (int i = 1; i < n; i++) {// 当前要插入的元素int tmp = a[i];// 已排序部分的最后一个元素的索引int j = i - 1;// 从后向前查找插入位置while (j >= 0 && a[j] > tmp) {a[j + 1] = a[j]; // 后移元素j--;}// 将当前元素插入到正确的位置a[j + 1] = tmp;}
}
特性总结
算法复杂度
  1. 时间复杂度
    • 最坏情况(数组逆序):O(n^2)
    • 最好情况(数组已排序):O(n)
    • 平均情况:O(n^2)
  2. 空间复杂度:原地排序,不需要额外的辅助空间,空间复杂度为 O(1)
  3. 稳定性:直接插入排序是稳定的,因为在插入过程中不会改变相等元素的相对顺序。

优缺点

优点

  1. 简单直观:实现容易,适合小规模数据。
  2. 性能良好:当数组接近有序时,插入排序的效率很高,接近 O(n)

缺点:

  1. 效率低下:对大规模、随机分布的数组排序效率较低,时间复杂度较高。
  2. 大量数据移动:当数组逆序时,几乎每次插入都需要移动大量元素。

适用场景
  1. 数据量较小(如 n <= 100)时,插入排序是一种简单有效的选择。
  2. 数据本身接近有序时(如几乎按升序排列),插入排序效率很高。

2.1.2 希尔排序 

希尔排序又称缩小增量法是一种基于插入排序的改进算法,得名于其发明者 Donald Shell。它通过分组和逐步缩小分组间距(增量),使得数据能够更快地接近有序,从而提高排序效率。

基本思想

先选定⼀个整数(通常是gap = n/3 + 1),把待排序文件所有记录分成各组,所有的距离相等的记录分在同⼀组内,并对每⼀组内的记录进⾏排序,然后gap = gap/3 + 1得到下⼀个整数,再将数组分成各组,进入插入排序,当gap = 1时,就相当于直接插入排序。

它是在直接插入排序算法的基础上进行改进而来的,综合来说它的效率肯定是要高于直接插入排序算法的。

算法步骤
  1. 初始化 gap = n / 3 + 1,其中 n 是数组的长度。
  2. 按照当前的 gap 将数组分组,对每组进行插入排序。
  3. 缩小 gap,继续分组排序,直到 gap = 1
  4. gap = 1 时,进行最后一次插入排序,数组有序。

 

代码实现
void ShellSort(int* a, int n) {int gap = n;// 缩小增量,直到 gap == 1while (gap > 1) {gap = gap / 3 + 1;// 分组for (int group = 0; group < gap; group++) { // 控制每组// 每组独立进行插入排序for (int i = group + gap; i < n; i += gap) {int tmp = a[i];int j = i - gap;while (j >= group && a[j] > tmp) {a[j + gap] = a[j];j -= gap;}a[j + gap] = tmp;}}}
}

显式地将数组分组,每组独立排序后再继续调整增量 gap,这种更好理解分组排序的原理,但代码稍显冗长,所以我一般用这种

void ShellSort1(int* a, int n) {int gap = n;// 缩小增量,直到 gap == 1while (gap > 1) {gap = gap / 3 + 1;// 从 gap 开始,模拟插入排序for (int i = gap; i < n; i++) {int tmp = a[i]; // 当前待插入的元素int j = i - gap;// 插入排序逻辑,按 gap 步长比较和移动while (j >= 0 && a[j] > tmp) { // 在同组中向前查找a[j + gap] = a[j]; // 将较大的元素后移j -= gap; // 按 gap 步长继续比较}a[j + gap] = tmp; // 插入到合适位置}}
}

这种方法也叫“简单希尔排序”(Simple Shell Sort),或者直接叫并着走,它直接在外层控制增量 gap,然后在整个数组中按步长进行插入排序,逻辑比较直观,效率高。这种实现方法更贴近希尔排序的本质,适合直接应用于实际场景。

它的核心思想是

  • 希尔排序的分组本质上是用 步长 gap 控制哪些元素属于一个组。

    • 在并着走的实现中,假设 gap = 3
      • 对于索引为 0, 3, 6, 9... 的元素,它们属于第一组。
      • 对于索引为 1, 4, 7, 10... 的元素,它们属于第二组。
      • 对于索引为 2, 5, 8, 11... 的元素,它们属于第三组。
    • 并着走的逻辑是遍历整个数组,隐式地让这些组在同一个循环中排序。
  • gap 的控制下:

    • 每个位置 i 的元素 a[i],都会和同组的前一个元素(位置 i - gap)进行比较。
    • 如果需要交换位置,就不断向前检查,直到找到合适位置。
特性总结
算法复杂度

1.时间复杂度

                最坏情况:O(n^2)(不理想的增量序列)。

                平均情况:O(n^(3/2)) 或更优(根据增量序列)。

                最好情况:接近 O(n)

可以分成内外层来分析

外层循环(控制增量 gap):应该能直接看出来吧,无疑问的O(log(n)),就是增量序列的长度。

内层循环(分组插入排序):

假设⼀共有n个数据,合计gap组,则每组为n / gap个;在每组中,插入移动的次数最坏的情况下为 1 + 2 + 3 + .... + ( n / gap− 1)),⼀共是gap组,因此: 1 + 2 + 3 + .... + ( n / gap− 1))
总计最坏情况下移动总数为: gap ∗ (1 + 2 + 3 + .... + (n / gap − 1 ))
gap取值有(以除3为例):n / 3  n / 9  n / 27 ......  2  1
  • 当gap为n / 3时,移动总数为: n / 3 * (1 + 2) = n
  • 当gap为n / 9时,移动总数为: n / 9 * (1 + 2 + 3 + .... + 8) = (n / 9) * (8 (1 + 8) / 2)= 4n
  • 最后⼀趟,gap=1,即直接插入排序,内层循环排序消耗为n

可知,比较次数是先增加再下降的,或者画一张曲线图更好理解

因此,希尔排序在最初和最后的排序的次数都为n,即前⼀阶段排序次数是逐渐上升的状态,当到达某⼀顶点时,排序次数逐渐下降至n,而该顶点的计算暂时无法给出具体的计算过程
所以,目前其实没有明确的希尔排序的时间复杂度,普遍认为的话是在 O(n^1.3) ,这里我们引用充当教科书较多的 《数据结构(C语言版)》--- 严蔚敏书中给出的时间复杂度的解释

 

2.空间复杂度:使用原地排序,额外空间复杂度为 O(1)

3.稳定性不稳定,因为在分组时可能会打乱相同元素的相对顺序。


优缺点

优点

  1. 简单易实现。
  2. 对中等规模的数组(如 1 万以下)性能较好。
  3. 在基本有序的数组上效率较高。

缺点

  1. 不稳定,不能保证相同元素的顺序。
  2. 对非常大的数组,效率不如快速排序。

增量序列的选择
  • 希尔增量gap = gap / 3 + 1
  • Hibbard增量gap = 2^k - 1
  • Sedgewick增量gap = 9 * 4^i - 9 * 2^i + 1 等。
  • 增量序列的选择会显著影响希尔排序的性能。

适用场景
  1. 数据规模适中(几百到几万)。
  2. 数据分布无规律,但需要排序效率较高的场景。
  3. 对性能要求高,但稳定性不重要的场景。

2.2 选择排序 

每⼀次从待排序的数据元素中选出最小或最大的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

2.2.1 直接选择排序 

直接选择排序(Selection Sort)是一种简单的排序算法,其基本思想是每次从待排序的序列中选择最小(或最大)元素,将其放到已排序序列的末尾。该算法属于交换排序类,通过多次选择最小(或最大)元素并与当前序列中的元素交换来逐步完成排序。

基本思想
  1. 选择最小元素:在每一轮中,找到剩余未排序部分的最小元素。
  2. 交换位置:将找到的最小元素与当前已排序部分的末尾元素交换位置。
  3. 重复:每次排好一个元素后,缩小待排序部分的范围,继续执行选择和交换操作,直到所有元素排序完成。
算法步骤 
  1. 假设数组长度为 n,开始时将整个数组看作未排序部分。
  2. 从第一个元素开始,扫描剩余部分,找到最小的元素。
  3. 将最小元素与当前待排序部分的第一个元素交换。
  4. 重复此过程,直到排序完成。
1. 在元素集合 array[i]--array[n-1] 中选择关键码最大(小)的数据元素
2. 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素
交换
3. 在剩余的 array[i]--array[n-2](array[i+1]--array[n-1]) 集合中,重复上述步骤,直到集合剩余 1 个元素
代码实现
void SelectionSort(int* a, int n) {// 外层循环控制已排序部分的末尾for (int i = 0; i < n - 1; i++) {int minIndex = i;// 内层循环在未排序部分中寻找最小值for (int j = i + 1; j < n; j++) {if (a[j] < a[minIndex]) {minIndex = j;  // 记录最小元素的索引}}// 交换最小元素与当前已排序部分的下一个元素if (minIndex != i) {int temp = a[i];a[i] = a[minIndex];a[minIndex] = temp;}}
}
特性总结
算法复杂度

1.时间复杂度

                最坏情况(数组逆序):O(n^2)

                最好情况(数组已排序):O(n^2)(即数组已经排序,选择排序仍需执行完整的循环)

                平均情况O(n^2)

2.空间复杂度原地排序:不需要额外的辅助空间,空间复杂度为 O(1)

3.稳定性不稳定:在排序过程中可能会改变相等元素的相对顺序,因为会交换位置。


优缺点

优点

  1. 简单直观:直接选择排序算法的实现简单,易于理解,适合小规模数据。
  2. 空间效率高:只使用常数级的额外空间,内存开销小。

缺点

  1. 效率低下:由于时间复杂度为 O(n^2),对于大规模数据,性能较差。
  2. 不稳定:相同元素的顺序可能被改变,导致排序不稳定。
  3. 交换次数较多:每次找到最小元素后都会交换,可能导致不必要的交换操作。

适用场景
  1. 数据量较小(如 n <= 100)时,选择排序是一种简单有效的排序方法,适合小规模数据的排序。
  2. 数据本身接近有序时,直接选择排序的性能相对较好,尽管时间复杂度为 O(n^2),但相较于其他 O(n^2) 算法,选择排序的交换次数较少。

2.2.2 堆排序

堆排序(Heap Sort)是一种基于堆数据结构的排序算法,堆是一种完全二叉树,满足堆的性质:

  • 最大堆(Max Heap):父节点的值大于或等于其子节点的值,根节点是最大元素。
  • 最小堆(Min Heap):父节点的值小于或等于其子节点的值,根节点是最小元素。

堆排序利用堆的性质,每次从堆中提取根节点(最大或最小),然后调整堆结构,从而实现排序。

基本思想 
  1. 构建堆:将待排序数组转换成一个堆结构(可以是最大堆或最小堆),通常构建最大堆。
  2. 交换根节点与最后一个节点:将堆顶(最大元素)与堆的最后一个元素交换,这样最大元素就被放置到了正确的位置。
  3. 调整堆:交换后,堆的结构可能被破坏,需要重新调整堆,使其恢复堆的性质。
  4. 重复:将剩下的部分继续调整为堆,再次进行交换,直到所有元素都排序完成。
算法步骤
  1. 建堆:将给定的数组转换成一个最大堆。
  2. 交换根节点和最后一个节点:把堆顶元素(最大值)交换到数组的末尾。
  3. 调整堆:将剩余部分重新调整为最大堆。
  4. 重复交换和调整过程,直到堆的大小减小为1。
代码实现 
#include <stdio.h>// 调整堆结构
void AdjustDown(int* a, int n, int parent) {int child = parent * 2 + 1;  // 左子节点的索引while (child < n) {// 如果有右子节点,且右子节点更大,则选择右子节点if (child + 1 < n && a[child + 1] > a[child]) {child++;}// 如果父节点小于最大子节点,则交换if (a[child] > a[parent]) {int temp = a[parent];a[parent] = a[child];a[child] = temp;parent = child;child = parent * 2 + 1;  // 继续向下调整} else {break;  // 如果父节点大于等于最大子节点,则结束}}
}// 堆排序主函数
void HeapSort(int* a, int n) {// 建堆(从最后一个非叶子节点开始调整堆)for (int i = (n - 1) / 2; i >= 0; --i) {AdjustDown(a, n, i);}// 交换根节点(最大元素)和最后一个元素,然后调整堆int end = n - 1;while (end > 0) {// 交换根节点与堆的最后一个元素int temp = a[0];a[0] = a[end];a[end] = temp;// 重新调整堆AdjustDown(a, end, 0);--end;}
}// 打印数组
void PrintArray(int* a, int n) {for (int i = 0; i < n; ++i) {printf("%d ", a[i]);}printf("\n");
}int main() {int arr[] = {4, 10, 3, 5, 1};int n = sizeof(arr) / sizeof(arr[0]);HeapSort(arr, n);PrintArray(arr, n);return 0;
}
堆排序的步骤演示

假设我们有一个数组 [4, 10, 3, 5, 1],我们来逐步演示堆排序的过程。

1.建堆:首先将数组转换为最大堆:

      AdjustDown 会从最后一个非叶子节点开始,调整堆结构。

                经过调整,最大堆应该是 [10, 5, 3, 4, 1]

2.交换根节点和最后一个元素:交换根节点 10 和数组末尾的元素 1,得到 [1, 5, 3, 4, 10]

                通过 AdjustDown 调整堆,使其重新恢复堆的性质,得到 [5, 4, 3, 1, 10]

3.再次交换根节点和最后一个元素:交换根节点 5 和倒数第二个元素 1,得到 [1, 4, 3, 5, 10]

                通过 AdjustDown 调整堆,得到 [4, 1, 3, 5, 10]

4.重复:继续交换并调整堆,直到整个数组排好序:

                交换后得到 [3, 1, 4, 5, 10]

                调整后得到 [3, 1, 4, 5, 10]

                最终得到排序结果 [1, 3, 4, 5, 10]

特性总结
算法复杂度

1.时间复杂度

                最坏情况(数组逆序):O(n log n)

                最好情况(数组已排序):O(n log n)

                平均情况O(n log n)

2.空间复杂度原地排序:堆排序不需要额外的辅助空间,空间复杂度为 O(1)

3.稳定性不稳定:堆排序在排序过程中可能改变相等元素的相对顺序,因此是一个不稳定的排序算法。


优缺点

优点

  1. 时间复杂度稳定:无论在最坏、最好还是平均情况下,堆排序的时间复杂度始终为 O(n log n),表现稳定。
  2. 原地排序:堆排序只使用常数级额外空间,空间复杂度为 O(1),内存开销小。
  3. 适用于大规模数据:由于堆排序的时间复杂度较为稳定,因此适合用于处理大规模数据的排序任务。

缺点

  1. 不稳定:堆排序不保持相等元素的相对顺序,因此不适用于需要稳定排序的场景。
  2. 常数因子较大:虽然时间复杂度为 O(n log n),但堆排序的常数因子较大,通常会比其他如快速排序的实际性能稍差。

适用场景
  1. 大规模数据的排序:堆排序在处理大数据时较为稳定,尤其是在对时间复杂度有较高要求时。
  2. 内存有限的情况:堆排序是原地排序,不需要额外的内存,适用于内存受限的情况。
  3. 需要稳定时间复杂度的场景:当不关心排序的稳定性时,堆排序是一个不错的选择,尤其是在无法预测输入数据分布的情况下。

下一章应该是介绍冒泡和快速排序(

那几种快速排序够写很多了(

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/481988.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【linux学习指南】Linux进程信号产生(三) 硬件异常除零出错?野指针异常?core文件

文章目录 &#x1f4dd;前言&#x1f320;模拟除0&#x1f309;除0出错&#xff1f;&#x1f309;野指针异常? &#x1f320;⼦进程退出coredump&#x1f309;Core Dump &#x1f6a9;总结 &#x1f4dd;前言 硬件异常被硬件以某种⽅式被硬件检测到并通知内核,然后内核向当前…

【人工智能-科普】图神经网络(GNN):与传统神经网络的区别与优势

文章目录 图神经网络(GNN):与传统神经网络的区别与优势什么是图神经网络?图的基本概念GNN的工作原理GNN与传统神经网络的不同1. 数据结构的不同2. 信息传递方式的不同3. 模型的可扩展性4. 局部与全局信息的结合GNN的应用领域总结图神经网络(GNN):与传统神经网络的区别与…

青藤云安全携手财信证券,入选金融科技创新应用优秀案例

11月29日&#xff0c;由中国信息通信研究院主办的第四届“金信通”金融科技创新应用案例评选结果正式发布。财信证券与青藤云安全联合提交的“基于RASP技术的API及数据链路安全治理项目”以其卓越的创新性和先进性&#xff0c;成功入选金融科技创新应用优秀案例。 据悉&#x…

Python系列 - MQTT协议

Python系列 - MQTT协议 资源连接 MQTT的介绍和应用场景的示例说明 一、什么是MQTT 百度关于MQTT的介绍如下&#xff1a; MQTT(消息队列遥测传输)是ISO 标准(ISO/IEC PRF 20922)下基于发布订阅范式的消息协议。它工作在 TCP/IP协议之上&#xff0c;是为硬件性能低下的远程设…

winform跨线程更新界面

1、报错代码 下面的代码中的this.Text指的是一个winform的窗体&#xff0c;开启Task执行下面的代码以后直接报错&#xff0c;提示线程间操作无效&#xff0c;这是因为在WinForms应用程序中&#xff0c;UI元素&#xff08;如控件&#xff09;通常只能在创建它们的线程&#xff…

Mybatis:CRUD数据操作之多条件查询及动态SQL

Mybatis基础环境准备请看&#xff1a;Mybatis基础环境准备 本篇讲解Mybati数据CRUD数据操作之多条件查询 1&#xff0c;编写接口方法 在 com.itheima.mapper 包写创建名为 BrandMapper 的接口。在 BrandMapper 接口中定义多条件查询的方法。 而该功能有三个参数&#xff0c;…

音视频技术扫盲之预测编码的基本原理探究

预测编码是一种数据压缩技术&#xff0c;广泛应用于图像、视频和音频编码等领域。其基本原理是利用数据的相关性&#xff0c;通过对当前数据的预测和实际值与预测值之间的差值进行编码&#xff0c;从而实现数据压缩的目的。 一、预测编码的基本概念 预测编码主要包括预测器和…

5. langgraph实现高级RAG (Adaptive RAG)

1. 数据准备 from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import WebBaseLoader from langchain_community.vectorstores import Chromaurls ["https://lilianweng.github.io/posts/2023-06-23-age…

自动化配置

自动化配置共享目录 nfs&#xff1a;共享某个目录&#xff0c;共享给哪些客户端&#xff0c;rw&#xff08;读写&#xff09;——rwx&#xff08;给目录权限设置&#xff09;&#xff0c;ro&#xff08;只读&#xff09; 写脚本 1、装包 可以调用仓库之前装包的脚本 &#x…

AtomicIntegerFieldUpdater能否降低内存

1. 代码如下&#xff1a; import java.util.LinkedList; import java.util.List; import java.util.concurrent.atomic.AtomicInteger;public class AtomicIntegerTest {final AtomicInteger startPosition new AtomicInteger(0);final AtomicInteger wrotePosition new Atom…

微服务即时通讯系统的实现(服务端)----(3)

目录 1. 消息存储子服务的实现1.1 功能设计1.2 模块划分1.3 模块功能示意图1.4 数据管理1.4.1 数据库消息管理1.4.2 ES文本消息管理 1.5 接口的实现1.5.1 消息存储子服务所用到的protobuf接口实现1.5.2 最近N条消息获取接口实现1.5.3 指定时间段消息搜索接口实现1.5.4 关键字消…

数据湖的概念(包含数据中台、数据湖、数据仓库、数据集市的区别)--了解数据湖,这一篇就够了

文章目录 一、数据湖概念1、企业对数据的困扰2、什么是数据湖3、数据中台、数据湖、数据仓库、数据集市的区别 网上看了好多有关数据湖的帖子&#xff0c;还有数据中台、数据湖、数据仓库、数据集市的区别的帖子&#xff0c;发现帖子写的都很多&#xff0c;而且专业名词很多&am…

202页MES项目需求方案深入解读,学习MES系统设计规划

202页MES项目需求方案深入解读&#xff0c;学习MES系统设计规划 MES项目需求方案旨在实现制造执行、效率提升、精细化管理等多个方面的功能。整体结构分为七大部分&#xff0c;包括制造执行、效率、精细化、品质在线、设备、用户思想和数据互联。制造执行部分关注订单、品质数据…

基础(函数、枚举)错题汇总

枚举默认从0开始&#xff0c;指定后会按顺序赋值 而这个枚举变量X&#xff0c;如果在全局&#xff08;函数外部&#xff09;定义&#xff0c;那默认为0&#xff0c;如果在函数内部&#xff08;局部变量&#xff09;&#xff0c;那就是随机值&#xff0c;必须初始化。 枚举变量…

互联网基础

TCP/IP协议&#xff08;协议组&#xff09; 分层名称TCP/IP协议应用层HTTP,FTP,mDNS,WebSocket,OSC...传输层TCP&#xff0c;UDP网络层IP链路层&#xff08;网络接口层&#xff09;Ethernet&#xff0c;Wi-Fi... 链路层&#xff08;网络接口层&#xff09; 链路层的主要作用…

【Vue3】从零开始创建一个VUE项目

【Vue3】从零开始创建一个VUE项目 手动创建VUE项目附录 package.json文件报错处理: Failed to get response from https://registry.npmjs.org/vue-cli-version-marker 相关链接&#xff1a; 【VUE3】【Naive UI】&#xff1c;NCard&#xff1e; 标签 【VUE3】【Naive UI】&…

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型&#xff0c;表示为二阶微分方程组。本文以一个二杆系统为例&#xff0c;介绍如何用MATLAB符号工具得到微分方程表达式&#xff0c;只需要…

基于Java Springboot在线点餐系统

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA/eclipse 数据…

QT实战--qt各种按钮实现

本篇介绍qt一些按钮的实现&#xff0c;包括正常按钮&#xff1b;带有下拉箭头的按钮的各种实现&#xff1b;按钮和箭头两部分分别响应&#xff1b;图片和按钮大小一致&#xff1b;图片和按钮大小不一致的处理&#xff1b;文字和图片位置的按钮 效果图如下&#xff1a; 详细实现…

服务熔断-熔断器设计

文章目录 服务为什么需要熔断熔断器设计思想熔断器代码实现 服务为什么需要熔断 对于服务端采用的保护机制为服务限流。 对于服务调用端是否存在保护机制&#xff1f; 假如要发布一个服务 B&#xff0c;而服务 B 又依赖服务 C&#xff0c;当一个服务 A 来调用服务 B 时&#x…