【Oracle11g SQL详解】GROUP BY 和 HAVING 子句:分组与过滤

GROUP BY 和 HAVING 子句:分组与过滤

在 Oracle 11g 中,GROUP BY 子句用于根据一个或多个列对查询结果进行分组,而 HAVING 子句用于对分组后的结果进行过滤。这两者常结合聚合函数使用,用以实现复杂的数据统计和分析。本文将系统讲解其语法、应用场景及实践案例。


一、GROUP BY 子句的基本语法
SELECT 列名1, 聚合函数(列名2), ...
FROM 表名
[WHERE 条件]
GROUP BY 列名1, 列名2, ...
[HAVING 条件];

说明:

  • GROUP BY:指定分组的列或表达式。
  • 聚合函数:如 SUMCOUNTAVGMAXMIN 等,用于对分组数据进行统计计算。
  • HAVING:用于过滤分组后的数据,与 WHERE 类似,但只能用于分组结果。

二、GROUP BY 的应用
1. 按单列分组

根据单个列的值对数据分组,并对每组数据应用聚合函数。

示例:计算每个部门的总薪资

SELECT department_id, SUM(salary) AS total_salary
FROM employees
GROUP BY department_id;

结果: 每个部门一行,总薪资通过 SUM 函数计算得出。


2. 按多列分组

分组可以基于多个列的组合值。

示例:统计每个部门中不同职位的员工人数

SELECT department_id, job_id, COUNT(*) AS employee_count
FROM employees
GROUP BY department_id, job_id;

结果: 每个部门中每种职位的员工数量。


3. 使用表达式分组

分组依据可以是计算结果或表达式。

示例:按薪资级别分组并统计员工人数

SELECT CASE WHEN salary >= 10000 THEN '高薪'WHEN salary >= 5000 THEN '中等薪资'ELSE '低薪'END AS salary_level, COUNT(*) AS employee_count
FROM employees
GROUP BY CASE WHEN salary >= 10000 THEN '高薪'WHEN salary >= 5000 THEN '中等薪资'ELSE '低薪'END;

结果: 返回按薪资级别分组后的员工数量。


三、HAVING 子句的应用

HAVING 子句用于对分组后的结果进行进一步过滤。它与 WHERE 的区别在于:

  • WHERE 用于分组前过滤数据。
  • HAVING 用于分组后过滤分组结果。

1. HAVING 的基本使用

示例:筛选总薪资超过 50000 的部门

SELECT department_id, SUM(salary) AS total_salary
FROM employees
GROUP BY department_id
HAVING SUM(salary) > 50000;

说明: HAVING 条件中直接使用聚合函数进行筛选。


2. HAVING 与 WHERE 联合使用

示例:筛选出仅统计薪资大于 3000 的员工,并返回总薪资超过 20000 的部门

SELECT department_id, SUM(salary) AS total_salary
FROM employees
WHERE salary > 3000
GROUP BY department_id
HAVING SUM(salary) > 20000;

说明:

  • WHERE 筛选薪资大于 3000 的员工,减少数据量。
  • HAVING 筛选分组后总薪资大于 20000 的部门。

3. HAVING 中的复杂条件

示例:筛选平均薪资大于 5000 且员工人数超过 5 的部门

SELECT department_id, AVG(salary) AS avg_salary, COUNT(*) AS employee_count
FROM employees
GROUP BY department_id
HAVING AVG(salary) > 5000 AND COUNT(*) > 5;

说明: 使用多个条件组合对分组结果进行过滤。


四、GROUP BY 和 HAVING 的进阶用法
1. GROUP BY ROLLUP

ROLLUP 是一种扩展分组的功能,用于生成分组的汇总数据。

示例:统计每个部门的总薪资,并增加所有部门的总薪资行

SELECT department_id, SUM(salary) AS total_salary
FROM employees
GROUP BY ROLLUP(department_id);

结果:

  • 返回每个部门的总薪资。
  • 额外增加一行显示所有部门的总薪资。

2. GROUP BY CUBE

CUBE 生成跨多个分组维度的汇总数据。

示例:统计每个部门和每种职位的薪资总额,同时增加汇总数据

SELECT department_id, job_id, SUM(salary) AS total_salary
FROM employees
GROUP BY CUBE(department_id, job_id);

结果:

  • 每个部门和职位的薪资总额。
  • 每个部门的汇总。
  • 所有部门和职位的总汇总。

3. GROUPING 函数

GROUPING 用于判断当前行是否为汇总行,配合 ROLLUPCUBE 使用。

示例:判断并标识汇总行

SELECT department_id, job_id, SUM(salary) AS total_salary,GROUPING(department_id) AS is_dept_summary,GROUPING(job_id) AS is_job_summary
FROM employees
GROUP BY CUBE(department_id, job_id);

说明:

  • 如果 GROUPING(department_id) 返回 1,表示当前行是部门的汇总数据。

五、性能优化建议
  1. 减少不必要的分组列

    • 只分组需要统计的列,减少资源开销。
  2. 适当使用索引

    • 对分组列建立索引,优化查询性能。
  3. 谨慎使用复杂表达式

    • 在分组表达式复杂时,可提前处理为中间结果表。

六、练习示例
  1. 统计每个部门的员工人数和平均薪资,并筛选出员工人数大于 5 且平均薪资超过 4000 的部门:
SELECT department_id, COUNT(*) AS employee_count, AVG(salary) AS avg_salary
FROM employees
GROUP BY department_id
HAVING COUNT(*) > 5 AND AVG(salary) > 4000;
  1. 按部门和职位分组统计总薪资,输出汇总信息:
SELECT department_id, job_id, SUM(salary) AS total_salary
FROM employees
GROUP BY ROLLUP(department_id, job_id);
  1. 统计每种薪资级别的员工人数,并筛选人数超过 10 的薪资级别:
SELECT CASE WHEN salary >= 10000 THEN '高薪'WHEN salary >= 5000 THEN '中等薪资'ELSE '低薪'END AS salary_level,COUNT(*) AS employee_count
FROM employees
GROUP BY CASE WHEN salary >= 10000 THEN '高薪'WHEN salary >= 5000 THEN '中等薪资'ELSE '低薪'END
HAVING COUNT(*) > 10;

七、小结

GROUP BYHAVING 子句是 SQL 中用于分组统计和结果过滤的关键工具。通过灵活使用它们,可以实现各种复杂的数据分析需求。掌握其语法和高级用法,将为数据库查询与分析奠定坚实的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/482398.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

乌班图单机(不访问外网)部署docker和服务的方法

面向对象:Ubuntu不能访问外网的机子,部署mysql、redis、jdk8、minio 过程: 1、安装docker(照着图去这里找对应的下载下来https://download.docker.com/linux/static/stable/),将7个docker官网下载的文件下载下来后,传上去服务器随便一个文件夹或者常用的opt或者/usr/lo…

响应式编程一、Reactor核心

目录 一、前置知识1、Lambda表达式2、函数式接口 Function3、StreamAPI4、Reactive-Stream1)几个实际的问题2)Reactive-Stream是什么?3)核心接口4)处理器 Processor5)总结 二、Reactor核心1、Reactor1&…

Docker for Everyone Plus——No Enough Privilege

直接告诉我们flag在/flag中,访问第一小题: sudo -l查看允许提权执行的命令: 发现有image load命令 题目指明了有rz命令,可以用ZMODEM接收文件,看到一些write up说可以用XShell、MobaXterm、Tabby Terminal等软件连接上…

深度学习基础2

1.损失函数 1.1 线性回归损失函数 1.1.1 MAE损失 MAE(Mean Absolute Error,平均绝对误差)通常也被称为 L1-Loss,通过对预测值和真实值之间的绝对差取平均值来衡量他们之间的差异。。 公式: 其中: n 是样…

【Android】组件化嘻嘻嘻gradle耶耶耶

文章目录 Gradle基础总结:gradle-wrapper项目根目录下的 build.gradlesetting.gradle模块中的 build.gradlelocal.properties 和 gradle.properties 组件化:项目下新建一个Gradle文件定义一个ext扩展区域config.gradle全局基础配置(使用在项目…

基础Web安全|SQL注入

基础Web安全 URI Uniform Resource Identifier,统一资源标识符,用来唯一的标识一个资源。 URL Uniform Resource Locator,统一资源定位器,一种具体的URI,可以标识一个资源,并且指明了如何定位这个资源…

【插入排序】:直接插入排序、二分插入排序、shell排序

【插入排序】:直接插入排序、二分插入排序、shell排序 1. 直接插入排序1.1 详细过程1.2 代码实现 2. 二分插入排序2.1 详细过程2.2 代码实现 3. shell排序3.1 详细过程3.2 代码实现 1. 直接插入排序 1.1 详细过程 1.2 代码实现 public static void swap(int[]arr,…

一万台服务器用saltstack还是ansible?

一万台服务器用saltstack还是ansible? 选择使用 SaltStack 还是 Ansible 来管理一万台服务器,取决于几个关键因素,如性能、扩展性、易用性、配置管理需求和团队的熟悉度。以下是两者的对比分析,帮助你做出决策: SaltStack&…

通讯专题4.1——CAN通信之计算机网络与现场总线

从通讯专题4开始,来学习CAN总线的内容。 为了更好的学习CAN,先从计算机网络与现场总线开始了解。 1 计算机网络体系的结构 在我们生活当中,有许多的网络,如交通网(铁路、公路等)、通信网(电信、…

使用OSPF配置不同进程的中小型网络

要求: 给每个设备的接口配置好相应的地址 对进程1的各区域使用认证,认证为明文发送,明文保存 对骨干区域使用接口认证,非骨干区域使用区域认证 其他ospf进程均使用区域0 FW1上配置接口信任域和非信任域和服务器&#xff0c…

软考高项经验分享:我的备考之路与实战心得

软考,尤其是信息系统项目管理师(高项)考试,对于众多追求职业提升与专业认可的人士来说,是一场充满挑战与机遇的征程。我在当年参加软考高项的经历,可谓是一波三折,其中既有成功的喜悦&#xff0…

Transformers在计算机视觉领域中的应用【第1篇:ViT——Transformer杀入CV界之开山之作】

目录 1 模型结构2 模型的前向过程3 思考4 结论 论文: AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE 代码:https://github.com/google-research/vision_transformer Huggingface:https://github.com/huggingf…

Unity3D模型场景等测量长度和角度功能demo开发

最近项目用到多段连续测量物体长度和角度功能,自己研究了下。 1.其中向量角度计算: 需要传入三个坐标来进行计算。三个坐标确定两条向量线段的方向,从而来计算夹角。 public Vector3 SetAngle(Vector3 p1, Vector3 p2,Vector3 p3) { …

蓝桥杯第 23 场 小白入门赛

一、前言 好久没打蓝桥杯官网上的比赛了,回来感受一下,这难度区分度还是挺大的 二、题目总览 三、具体题目 3.1 1. 三体时间【算法赛】 思路 额...签到题 我的代码 // Problem: 1. 三体时间【算法赛】 // Contest: Lanqiao - 第 23 场 小白入门赛 …

从0开始学PHP面向对象内容之常用设计模式(享元)

二、结构型设计模式 7、享元模式(Flyweight Pattern) 这里是引用享元模式(Flyweight Pattern) 是一种结构型设计模式,旨在通过共享对象来减少内存使用,尤其适用于大量相似对象的场景。通过共享和重用对象的…

YOLO 标注工具 AutoLabel 支持 win mac linux

常见的标注工具,功能基础操作繁琐,无复制粘贴,标签无法排序修改,UI不美观,bug修正不及时,没有集成识别、训练、模型导出… 怎么办呢?AutoLabel它来了 Quick Start 一图胜千言 图像标注 支持YOL…

《Python基础》之Python中可以转换成json数据类型的数据

目录 一、JSON简介 JSON有两种基本结构 1、对象(Object) 2、数组(Array) 二、将数据装换成json数据类型方法 三、在Python中,以下数据类型可以直接转换为JSON数据类型 1、字典(Dictionary&#xff09…

如何在Bash中等待多个子进程完成,并且当其中任何一个子进程以非零退出状态结束时,使主进程也返回一个非零的退出码?

文章目录 问题回答参考 问题 如何在 Bash 脚本中等待该脚本启动的多个子进程完成,并且当这其中任意一个子进程以非零退出码结束时,让该脚本也返回一个非零的退出码? 简单的脚本: #!/bin/bash for i in seq 0 9; docalculations $i & d…

远程桌面协助控制软件 RustDesk v1.3.3 多语言中文版

RustDesk 是一款开源的远程桌面软件,支持多平台操作,包括Windows、macOS、Linux、iOS、Android和Web。它提供端到端加密和基于角色的访问控制,确保安全性和隐私保护。使用简单,无需复杂配置,通过输入ID和密码即可快速连…

LWIP和FATFS 实现 FTP 服务端

目录 一、前言 二、LWIP 和 FTP 简介 1.LWIP 2.FTP 三、实现 FTP 服务端的主要步骤 1.初始化 LWIP 2.创建 FTP 服务器任务 3.处理客户端连接 4.实现 FTP 命令处理 5.文件系统操作 6.错误处理和日志记录 四、示例代码 1.创建FTP任务 2. FTP任务代码 3.处理交互数据…