YOLO的框架及版本迭代

YOLO(You Only Look Once)是一种非常流行的实时目标检测算法,其特点是将目标检测任务转换为一个回归问题,通过一次前向传播就可以同时完成目标的分类和定位。以下是YOLO框架的整体架构和工作原理:

一、YOLO的基本框架

1. 输入层

  • 输入是一张图像,通常被调整为固定大小的方形图像,例如 416 × 416 416 \times 416 416×416 640 × 640 640 \times 640 640×640
  • 输入图像的每个像素点被归一化为 [ 0 , 1 ] [0, 1] [0,1] 之间的浮点数。

2. 主干网络(Backbone)

  • 这是YOLO的核心特征提取部分,类似于卷积神经网络(CNN)。
  • 不同版本的YOLO使用不同的主干网络:
    • YOLOv1 使用了简单的 GoogLeNet 风格的CNN。
    • YOLOv2、YOLOv3 使用了 Darknet 网络。
    • YOLOv4、YOLOv5 引入了 CSPDarknet
    • YOLOv7 进一步优化了网络结构,引入了 ELAN 层。
    • YOLOv8 使用了更轻量级的结构,如 EfficientNetTransformer

3. 特征金字塔网络(Feature Pyramid Network, FPN)

  • 将不同尺度的特征图结合,帮助检测不同大小的目标。
  • YOLOv3 及以后版本引入了 FPNPAN(Path Aggregation Network),实现更好的多尺度特征融合。

4. 输出层(Detection Head)

  • YOLO将输入图像划分为 S × S S \times S S×S 的网格,每个网格负责检测一个或多个目标。
  • 对于每个网格,预测:
    • Bounding Box:边界框的位置( x , y , w , h x, y, w, h x,y,w,h)。
    • 置信度:边界框中是否有物体以及置信度。
    • 类别概率:每个类别的概率。

输出的张量结构如下:
( S × S × B × ( 5 + C ) ) (S \times S \times B \times (5 + C)) (S×S×B×(5+C))
其中:

  • S × S S \times S S×S:网格大小。
  • B B B:每个网格的预测框数量(例如 YOLOv3 中 B = 3 B=3 B=3)。
  • 5 5 5:包含边界框的 x , y , w , h x, y, w, h x,y,w,h 和置信度。
  • C C C:类别数量。

二、YOLO的工作流程

  1. 图像输入:将原始输入图像调整为固定大小。
  2. 特征提取:主干网络提取图像中的特征。
  3. 预测框生成:生成多个边界框,并为每个框预测置信度和类别概率。
  4. 非极大值抑制(NMS):通过置信度和 IoU(交并比)过滤掉重叠和低置信度的框,保留最佳的预测框。
  5. 输出结果:输出检测到的目标类别、边界框位置和置信度。

三、YOLO的优缺点

优点:

  • 速度快:YOLO可以在实时条件下完成目标检测,适用于实时应用。
  • 端到端训练:YOLO直接从图像中学习特征并预测目标位置和类别。
  • 单一模型:不需要额外的候选区域生成步骤。

缺点:

  • 对小目标的检测效果较差:由于将图像划分为较大的网格,小目标可能被忽略。
  • 精度可能不如两阶段方法(如Faster R-CNN):尤其是在复杂的背景下。

四、YOLO模型的改进版本

版本主要改进优势
YOLOv1单次检测,回归问题速度快,简单
YOLOv2使用Darknet,Batch Normalization提高检测精度
YOLOv3多尺度检测,FPN改善小目标检测
YOLOv4CSPDarknet、PAN、数据增强进一步提升速度与精度
YOLOv5PyTorch实现,模块化更强更易训练和部署
YOLOv7ELAN、E-ELAN模块提高计算效率
YOLOv8支持Transformer、EfficientNet等更轻量化、更高精度

五、YOLO的代码框架示例(PyTorch)

import torch
import torch.nn as nnclass YOLO(nn.Module):def __init__(self, num_classes=80):super(YOLO, self).__init__()# Backbone: Feature extractionself.backbone = DarknetBackbone()# Head: Detection headself.head = DetectionHead(num_classes)def forward(self, x):features = self.backbone(x)output = self.head(features)return outputclass DarknetBackbone(nn.Module):# 定义YOLO的Darknet主干网络def __init__(self):super(DarknetBackbone, self).__init__()# 多层卷积层self.layers = nn.Sequential(nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(32),nn.ReLU(inplace=True),# 更多的卷积层...)def forward(self, x):return self.layers(x)class DetectionHead(nn.Module):# 定义检测头def __init__(self, num_classes):super(DetectionHead, self).__init__()self.conv = nn.Conv2d(512, (5 + num_classes) * 3, kernel_size=1)def forward(self, x):return self.conv(x)# 测试模型
model = YOLO(num_classes=80)
input_tensor = torch.randn(1, 3, 416, 416)
output = model(input_tensor)
print(output.shape)

总结

YOLO的核心思想是一次看全图,将目标检测作为回归问题进行端到端学习。它具有高效、实时的特点,并且通过不同版本的改进,在速度和精度之间取得了良好的平衡。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/482560.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于协同推荐的黔醉酒业白酒销售系统

文末获取源码和万字论文 摘 要 基于协同推荐的黔醉酒业白酒销售系统主要针对黔醉酒业的具体业务需求所设计,现阶段阶段我国大型企业都会有自己的电商平台以及销售管理系统,其功能对于中小型过于冗长复杂,成本也不是中小型企业能够承受的&…

解决jupyter notebook 新建或打开.ipynb 报500 : Internal Server Error(涉及jinja2兼容性问题)

报错: [E 10:09:52.362 NotebookApp] 500 GET /notebooks/Untitled16.ipynb?kernel_namepyt hon3 (::1) 93.000000ms refererhttp://localhost:8888/tree ...... 重点是: from .exporters import * File "C:\ProgramData\Anaconda3\lib\site-p…

Kali Linux系统一键汉化中文版及基础使用详细教程

Kali Linux系统一键汉化中文版及基础使用详细教程 引言 Kali Linux是一款基于Debian的Linux发行版,专为渗透测试和网络安全而设计。由于其强大的功能和丰富的工具,Kali Linux在安全领域得到了广泛应用。然而,许多用户在使用Kali Linux时会遇…

LLaMA-Factory 上手即用教程

LLaMA-Factory 是一个高效的大型语言模型微调工具,支持多种模型和训练方法,包括预训练、监督微调、强化学习等,同时提供量化技术和实验监控,旨在提高训练速度和模型性能。 官方开源地址:https://github.com/hiyouga/L…

使用PyQt5开发一个GUI程序的实例演示

一、安装Python 下载安装到这个目录 G:\Python38-32 安装完成有这些工具,后面备用: G:\Python38-32\Scripts\pyrcc5.exe G:\Python38-32\Scripts\pyuic5.exe 二、PyQt环境配置 pip install PyQt5 pip install pyqt5-tools 建议使用国内源&#xff0c…

【开源免费】基于Vue和SpringBoot的校园资料分享平台(附论文)

博主说明:本文项目编号 T 059 ,文末自助获取源码 \color{red}{T059,文末自助获取源码} T059,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…

LocalDateTime序列化(跟redis有关)

使用过 没成功,序列化后是[2024 11 10 17 22 20]差不多是这样, 反序列化后就是: [ 2024 11 10.... ] 可能是我漏了什么 这是序列化后的: 反序列化后: 方法(加序列化和反序列化注解)&…

32 从前序与中序遍历序列构造二叉树

32 从前序与中序遍历序列构造二叉树 32.1 从前序与中序遍历序列构造二叉树解决方案 class Solution { public:TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {return buildTreeHelper(preorder, inorder, 0, 0, inorder.size() - 1)…

【韩顺平老师Java反射笔记】

反射 文章目录 基本使用反射机制java程序在计算机有三个阶段反射相关的主要类 反射调用优化Class类的常用方法获取Class对象的6种方式哪些类型有Class对象类加载类加载时机类加载过程图 通过反射获取类的结构信息第一组&#xff1a;java.lang.Class类第二组&#xff1a;java.la…

Python实现2048小游戏

2048是一个单人益智游戏&#xff0c;目标是移动和合并数字&#xff0c;以达到2048。 1. 实现效果 Python实现2048小游戏 2. 游戏规则 简单地理解一下规则 基本规则&#xff1a; 4x4棋盘&#xff0c;每个格可包含一个2的倍数的数字&#xff0c;初始时为空&#xff0c;表示0。…

基于树莓派3B+的简易智能家居小项目(WiringPi库 + C语言开发)

github主页&#xff1a;https://github.com/snqx-lqh 本项目github地址&#xff1a;https://github.com/snqx-lqh/RaspberryPiSmartHome 硬件开源地址&#xff1a;https://oshwhub.com/from_zero/shu-mei-pai-kuo-zhan-ban 欢迎交流 树莓派智能家居项目&#xff0c;学习树莓派的…

MacOS安装MySQL数据库和Java环境以及Navicat

安装MySQL 去官网下载&#xff1a;MySQL 下载好后安装&#xff0c;在设置里往下滑&#xff0c;出现了这样&#xff0c;就代表安装成功了 接下来配置环境&#xff1a; 首先在我们的设备上找到终端并打开,输入 vim ~/.bash_profile(注意vim后面的空格)&#xff0c;输入完成后点击…

【论文笔记】Towards Online Continuous Sign Language Recognition and Translation

&#x1f34e;个人主页&#xff1a;小嗷犬的个人主页 &#x1f34a;个人网站&#xff1a;小嗷犬的技术小站 &#x1f96d;个人信条&#xff1a;为天地立心&#xff0c;为生民立命&#xff0c;为往圣继绝学&#xff0c;为万世开太平。 基本信息 标题: Towards Online Continuou…

手机控制载货汽车一键启动无钥匙进入广泛应用

移动管家载货汽车一键启动无钥匙进入手机控车系统‌&#xff0c; 该系统广泛应用于物流运输、工程作业等货车场景&#xff0c;为车主提供了高效、便捷的启动和熄火解决方案&#xff0c;体现了科技进步对物流行业的积极影响‌ 核心功能‌&#xff1a;简化启动流程&#xff0c;提…

「Mac畅玩鸿蒙与硬件34」UI互动应用篇11 - 颜色选择器

本篇将带你实现一个颜色选择器应用。用户可以从预设颜色中选择&#xff0c;或者通过输入颜色代码自定义颜色来动态更改界面背景。该应用展示了如何结合用户输入、状态管理和界面动态更新的功能。 关键词 UI互动应用颜色选择器状态管理用户输入界面动态更新 一、功能说明 颜色…

【解决安全扫描漏洞】---- 检测到目标站点存在 JavaScript 框架库漏洞

1. 漏洞结果 JavaScript 框架或库是一组能轻松生成跨浏览器兼容的 JavaScript 代码的工具和函数。如果网站使用了存在漏洞的 JavaScript 框架或库&#xff0c;攻击者就可以利用此漏洞来劫持用户浏览器&#xff0c;进行挂马、XSS、Cookie劫持等攻击。 1.1 漏洞扫描截图 1.2 具体…

IDEA Maven 打包找不到程序包错误或找不到符号,报错“程序包不存在“

参考文章&#xff1a;https://blog.csdn.net/yueeryuanyi/article/details/14211090 问题&#xff1a;IDEA Maven 打包找不到程序包错误或找不到符号,报错“程序包不存在“编译都没问题 解决思路 – >【清除缓存】 1. 强制刷新Maven缓存 选择 Maven 标签&#xff0c;Exe…

设计模式-适配器模式-注册器模式

设计模式-适配器模式-注册器模式 适配器模式 如果开发一个搜索中台&#xff0c;需要适配或接入不同的数据源&#xff0c;可能提供的方法参数和平台调用的方法参数不一致&#xff0c;可以使用适配器模式 适配器模式通过封装对象将复杂的转换过程隐藏于幕后。 被封装的对象甚至…

牛客面经学习【2024/12/1】

电流电压采样电路&#xff1a; 句句在理&#xff1a; 最近组里来了个新人&#xff0c;想表现自己&#xff0c;经常用力过猛。 劝大家&#xff0c;到了新公司&#xff0c;第一件事一定是观察&#xff01; 这时候做任何事&#xff0c;都不要用力过猛&#xff0c;多做多说多错&am…

记录QT5迁移到QT6.8上的一些问题

经常看到有的同学说网上的教程都是假的&#xff0c;巴拉巴拉&#xff0c;看看人家发布时间&#xff0c;Qt官方的API都会有所变动&#xff0c;多搜索&#xff0c;多总结&#xff0c;再修改记录。 下次遇到问题多这样搜索 QT 4/5/6 xxx document&#xff0c;对比一下就知道…